login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Antidiagonal sums of the convolution array A213762.
3

%I #17 Feb 19 2024 03:01:43

%S 1,8,31,90,225,516,1123,2366,4885,9960,20151,40578,81481,163340,

%T 327115,654726,1310013,2620656,5242015,10484810,20970481,41941908,

%U 83884851,167770830,335542885,671087096,1342175623,2684352786

%N Antidiagonal sums of the convolution array A213762.

%H Clark Kimberling, <a href="/A213764/b213764.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5,-9,7,-2).

%F a(n) = -10 + 5*2^(n+1) - 7*n - 2*n^2.

%F a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4).

%F G.f.: f(x)/g(x), where f(x) = x*(1 + 3*x) and g(x) = (1 - 2*x)*(1 - x)^3.

%t (See A213762.)

%t LinearRecurrence[{5,-9,7,-2},{1,8,31,90},30] (* _Harvey P. Dale_, Jan 27 2016 *)

%Y Cf. A213762, A213500.

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Jun 20 2012