Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Sep 08 2022 08:46:02
%S 1,9,38,120,327,819,1948,4482,10085,22341,48930,106236,229075,491175,
%T 1048184,2227782,4718097,9960921,20970910,44039520,92273951,192937179,
%U 402652308,838859850,1744829437,3623877549,7516191578,15569255172,32212253355,66571991631
%N Principal diagonal of the convolution array A213582.
%H Clark Kimberling, <a href="/A213583/b213583.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (7,-19,25,-16,4).
%F a(n) = 7*a(n-1) - 19*a(n-2) + 25*a(n-3) - 16*a(n-4) + 4*a(n-5).
%F G.f.: x*(1 + 2*x - 6*x^2) / ((1 - x)^3*(1 - 2*x)^2).
%F a(n) = (n+1)*(2^(n+2) - 3*n -4)/2. - _Colin Barker_, Nov 04 2017
%F E.g.f.: (4*(1+2*x)*exp(2*x) - (3*x^2+10*x+4)*exp(x))/2. - _G. C. Greubel_, Jul 08 2019
%t (* First program *)
%t b[n_]:= 2^n - 1; c[n_]:= n;
%t T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
%t TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
%t Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213582 *)
%t r[n_]:= Table[T[n, k], {k, 40}] (* columns of antidiagonal triangle *)
%t Table[T[n, n], {n, 1, 40}] (* A213583 *)
%t s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
%t Table[s[n], {n, 1, 50}] (* A156928 *)
%t (* Second program *)
%t LinearRecurrence[{7,-19,25,-16,4},{1,9,38,120,327},40] (* _Harvey P. Dale_, Apr 06 2013 *)
%t Table[(n+1)*(2^(n+2)-3*n-4)/2, {n,40}] (* _G. C. Greubel_, Jul 08 2019 *)
%o (PARI) Vec(x*(1 + 2*x - 6*x^2) / ((1 - x)^3*(1 - 2*x)^2) + O(x^40)) \\ _Colin Barker_, Nov 04 2017
%o (PARI) vector(40, n, (n+1)*(2^(n+2) -3*n-4)/2) \\ _G. C. Greubel_, Jul 08 2019
%o (Magma) [(n+1)*(2^(n+2) -3*n-4)/2: n in [1..40]]; // _G. C. Greubel_, Jul 08 2019
%o (Sage) [(n+1)*(2^(n+2) -3*n-4)/2 for n in (1..40)] # _G. C. Greubel_, Jul 08 2019
%o (GAP) List([1..40], n-> (n+1)*(2^(n+2) -3*n-4)/2) # _G. C. Greubel_, Jul 08 2019
%Y Cf. A213500, A213582.
%K nonn,easy
%O 1,2
%A _Clark Kimberling_, Jun 19 2012