login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Principal diagonal of the convolution array A213579.
3

%I #22 Nov 11 2024 12:59:57

%S 1,5,15,35,74,146,277,511,925,1651,2916,5108,8889,15385,26507,45491,

%T 77806,132678,225645,382835,648121,1095075,1846920,3109800,5228209,

%U 8777261,14716167,24643331,41220050,68873786,114964741,191719783

%N Principal diagonal of the convolution array A213579.

%H Clark Kimberling, <a href="/A213580/b213580.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4,-2,4,0,-1).

%F a(n) = 4*a(n-1) - 4*a(n-2) - 2*a(n-3) + 4*a(n-4) + a(n-5).

%F G.f.: x*(1 + x - x^2 - 3*x^3)/(1 - 2*x + x^3)^2.

%F a(n) = Fibonacci(n+3) + n*Fibonacci(n+2) - 2*(n+1). - _G. C. Greubel_, Jul 08 2019

%t (* First program *)

%t b[n_]:= Fibonacci[n]; c[n_]:= n;

%t T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]

%t TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]

%t Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213579 *)

%t r[n_]:= Table[T[n, k], {k, 40}]

%t d = Table[T[n, n], {n, 1, 40}] (* A213580 *)

%t s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]

%t s1 = Table[s[n], {n, 1, 50}] (* A053808 *)

%t (* Second program *)

%t Table[Fibonacci[n+3] + n*Fibonacci[n+2] -2*(n+1), {n, 40}] (* _G. C. Greubel_, Jul 08 2019 *)

%o (PARI) vector(40, n, f=fibonacci; f(n+3) +n*f(n+2) -2*(n+1)) \\ _G. C. Greubel_, Jul 08 2019

%o (Magma) F:=Fibonacci; [F(n+3) + n*F(n+2) -2*(n+1): n in [1..40]]; // _G. C. Greubel_, Jul 08 2019

%o (Sage) f=fibonacci; [f(n+3) +n*f(n+2) -2*(n+1) for n in (1..40)] # _G. C. Greubel_, Jul 08 2019

%o (GAP) F:=Fibonacci;; List([1..40], n-> F(n+3) +n*F(n+2) -2*(n+1)); # _G. C. Greubel_, Jul 08 2019

%Y Cf. A000045, A213500, A213579.

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Jun 18 2012