OFFSET
1,9
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q) * eta(q^50)) / (eta(q^2) * eta(q^25)) in powers of q.
Euler transform of period 50 sequence [ -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (50 t)) = f(t) where q = exp(2 Pi i t).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (v - u^2) * (v - w^2) - 2*u*w * (1 + w^2).
G.f.: x * (Product_{k>0} (1 + x^(25*k)) / (1 + x^k)).
Convolution inverse of A034320.
a(n) ~ -(-1)^n * exp(2*Pi*sqrt(n)/5) / (2*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Jun 06 2018
EXAMPLE
G.f. = q - q^2 - q^4 + q^5 - q^6 + q^7 - q^8 + 2*q^9 - 2*q^10 + 2*q^11 - 2*q^12 + ...
MATHEMATICA
QP = QPochhammer; s = (QP[q]*QP[q^50])/(QP[q^2]*QP[q^25]) + O[q]^70; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)
a[ n_] := SeriesCoefficient[ q QPochhammer[ -q^25, q^25] / QPochhammer[ -q, q], {q, 0, n}]; (* Michael Somos, May 05 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^50 + A) / (eta(x^2 + A) * eta(x^25 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jun 11 2012
STATUS
approved