|
|
A213419
|
|
Expansion of q * chi(-q) / chi(-q^25) in powers of q where chi() is a Ramanujan theta function.
|
|
1
|
|
|
1, -1, 0, -1, 1, -1, 1, -1, 2, -2, 2, -2, 3, -3, 3, -4, 5, -5, 5, -6, 7, -8, 8, -9, 11, -11, 11, -14, 15, -16, 17, -19, 22, -23, 24, -27, 31, -32, 34, -38, 42, -44, 47, -52, 57, -61, 64, -70, 78, -82, 87, -96, 103, -110, 117, -127, 138, -146, 155, -168, 182
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,9
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Expansion of (eta(q) * eta(q^50)) / (eta(q^2) * eta(q^25)) in powers of q.
Euler transform of period 50 sequence [ -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (50 t)) = f(t) where q = exp(2 Pi i t).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (v - u^2) * (v - w^2) - 2*u*w * (1 + w^2).
G.f.: x * (Product_{k>0} (1 + x^(25*k)) / (1 + x^k)).
a(n) ~ -(-1)^n * exp(2*Pi*sqrt(n)/5) / (2*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Jun 06 2018
|
|
EXAMPLE
|
G.f. = q - q^2 - q^4 + q^5 - q^6 + q^7 - q^8 + 2*q^9 - 2*q^10 + 2*q^11 - 2*q^12 + ...
|
|
MATHEMATICA
|
QP = QPochhammer; s = (QP[q]*QP[q^50])/(QP[q^2]*QP[q^25]) + O[q]^70; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)
a[ n_] := SeriesCoefficient[ q QPochhammer[ -q^25, q^25] / QPochhammer[ -q, q], {q, 0, n}]; (* Michael Somos, May 05 2016 *)
|
|
PROG
|
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^50 + A) / (eta(x^2 + A) * eta(x^25 + A)), n))};
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|