login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213033
n*[n/2]*[n/3], where [] = floor.
2
0, 0, 0, 3, 8, 10, 36, 42, 64, 108, 150, 165, 288, 312, 392, 525, 640, 680, 972, 1026, 1200, 1470, 1694, 1771, 2304, 2400, 2704, 3159, 3528, 3654, 4500, 4650, 5120, 5808, 6358, 6545, 7776, 7992, 8664, 9633, 10400, 10660, 12348, 12642, 13552
OFFSET
0,4
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 0, -1, 2, 0, -2, -2, 0, 2, -1, 0, 1, 1, 0, -1).
FORMULA
a(n) = a(n-2)+a(n-3)-a(n-5)+2*a(n-6)-2*a(n-8)+2*a(n-11)-a(n-12)+a(n-14)+a(n-15)-a(n-17).
G.f.: (3*x^3 + 8*x^4 + 7*x^5 + 25*x^6 + 24*x^7 + 21*x^8 + 32*x^9 + 38*x^10 + 15*x^11 + 22*x^12 + 13*x^13 + 5*x^14 + 2*x^15 + x^16)/(1 - x^2 - x^3 + x^5 - 2*x^6 + 2*x^8 + 2*x^9 - 2*x^11 + x^12 - x^14 - x^15 + x^17).
MATHEMATICA
a[n_] := n*Floor[n/2]*Floor[n/3]
Table[a[n], {n, 0, 90}] (* A213033 *)
LinearRecurrence[{0, 1, 1, 0, -1, 2, 0, -2, -2, 0, 2, -1, 0, 1, 1, 0, -1}, {0, 0, 0, 3, 8, 10, 36, 42, 64, 108, 150, 165, 288, 312, 392, 525, 640}, 60]
CROSSREFS
Cf. A242669.
Sequence in context: A332976 A032914 A088072 * A305176 A046545 A279585
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 05 2012
STATUS
approved