login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a triangular number.
2

%I #51 May 21 2021 17:44:36

%S 1,3,5,9,17,33,45,72,143,152,303,420,451,603,952,1398,1572,2408,3762,

%T 4233,5880,6325,8469,13384,20079,34189,62769,82665,87448,161037,

%U 287283,371337,515745,533505,573815,734484,737035,737149,767505,825495,887865,1136468,2272935

%N a(0)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a triangular number.

%C Corresponding triangular numbers t(n)=a(n)*a(n+1): 3, 15, 45, 153, 561, 1485, 3240, 10296, 21736, 46056, 127260, 189420, 271953, 574056, 1330896, 2197656, 3785376, 9058896, 15924546, 24890040, 37191000, ...

%t a[0] = 1; a[n_] := a[n] = For[k = a[n-1]+1, True, k++, If[ IntegerQ[ Sqrt[8k*a[n-1]+1] ], Return[k] ] ]; Table[ Print[a[n]]; a[n], {n, 0, 42}] (* _Jean-François Alcover_, Sep 14 2012 *)

%o (Python)

%o a = 1

%o for n in range(55):

%o print(a, end=',')

%o b = k = 0

%o while k<=a:

%o tn = b*(b+1)//2

%o k = 0

%o if tn%a==0:

%o k = tn // a

%o b += 1

%o a = k

%Y Cf. A000217, A214961.

%Y Cf. A081976 (a(0)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a Fibonacci number).

%Y Cf. A006882 (a(0)=a(1)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a factorial).

%Y Cf. A079078 (a(0)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a primorial).

%K nonn,easy

%O 0,2

%A _Alex Ratushnyak_, Aug 03 2012