login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213005
a(0)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a triangular number.
2
1, 3, 5, 9, 17, 33, 45, 72, 143, 152, 303, 420, 451, 603, 952, 1398, 1572, 2408, 3762, 4233, 5880, 6325, 8469, 13384, 20079, 34189, 62769, 82665, 87448, 161037, 287283, 371337, 515745, 533505, 573815, 734484, 737035, 737149, 767505, 825495, 887865, 1136468, 2272935
OFFSET
0,2
COMMENTS
Corresponding triangular numbers t(n)=a(n)*a(n+1): 3, 15, 45, 153, 561, 1485, 3240, 10296, 21736, 46056, 127260, 189420, 271953, 574056, 1330896, 2197656, 3785376, 9058896, 15924546, 24890040, 37191000, ...
MATHEMATICA
a[0] = 1; a[n_] := a[n] = For[k = a[n-1]+1, True, k++, If[ IntegerQ[ Sqrt[8k*a[n-1]+1] ], Return[k] ] ]; Table[ Print[a[n]]; a[n], {n, 0, 42}] (* Jean-François Alcover, Sep 14 2012 *)
PROG
(Python)
a = 1
for n in range(55):
print(a, end=', ')
b = k = 0
while k<=a:
tn = b*(b+1)//2
k = 0
if tn%a==0:
k = tn // a
b += 1
a = k
CROSSREFS
Cf. A081976 (a(0)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a Fibonacci number).
Cf. A006882 (a(0)=a(1)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a factorial).
Cf. A079078 (a(0)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a primorial).
Sequence in context: A374518 A297300 A364543 * A171856 A205537 A135728
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, Aug 03 2012
STATUS
approved