Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Aug 02 2018 07:55:47
%S 13,15,16,18,19,21,22,23,25,30,32,34,36,47,53,56,63,69,74,75,76,80,90,
%T 92,96,104,108,117,123,133,136,153,165,169,172,176,190,198,228,238,
%U 245,259,273,285,286,294,304,325,328,340,342,350,357,369,370,376,385,390,403,408,416,420,423,425,429,444,448,459,462,465,468,484,496,500
%N Numbers n such that A212813(n) = 3.
%D Bellamy, O. S.; Cadogan, C. C. Subsets of positive integers: their cardinality and maximality properties. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 167--178, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561043 (82b:10006)
%H Reinhard Zumkeller and Donovan Johnson, <a href="/A212908/b212908.txt">Table of n, a(n) for n = 1..2632</a> (terms up to a(2500) from Reinhard Zumkeller)
%t nmax = 258280326 (* = last term = a(2632) *);
%t kmax = 100 (* = number of terms to compute *);
%t a36288[n_] := a36288[n] = If[n==1, 1, Total[Times @@@ FactorInteger[n]]+1];
%t a212813[n_] := Module[{i, k = n}, For[i = 1, i <= 4, i++, If[k == 8, Return[i-1]]; k = a36288[k]]; -1];
%t k = 0;
%t Do[If[a212813[n] == 3, k++; If[k > kmax, Break[]]; a[k] = n; Print["a(", k, ") = ", n]], {n, 1, nmax}];
%t Array[a, kmax] (* _Jean-François Alcover_, Aug 02 2018 *)
%o (Haskell)
%o import Data.List (elemIndices)
%o a212908 n = a212908_list !! (n-1)
%o a212908_list = map (+ 1) $ elemIndices 3 a212813_list
%o -- _Reinhard Zumkeller_, May 30 2012
%Y Cf. A212813, A212814, A212815, A212816, A212909.
%K nonn,fini,full
%O 1,1
%A _N. J. A. Sloane_, May 30 2012
%E Keyword "full" added by _Donovan Johnson_, Jun 02 2012