login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212865
Number of nondecreasing sequences of n 1..5 integers with no element dividing the sequence sum.
2
0, 5, 9, 15, 22, 32, 40, 59, 74, 97, 124, 159, 188, 229, 260, 301, 347, 415, 477, 559, 630, 715, 801, 897, 987, 1106, 1214, 1342, 1471, 1623, 1760, 1934, 2099, 2287, 2475, 2683, 2878, 3116, 3334, 3581, 3832, 4115, 4377, 4681, 4968, 5283, 5605, 5965, 6310, 6707
OFFSET
1,2
COMMENTS
Column 5 of A212868.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) -2*a(n-3) +a(n-5) +2*a(n-6) -2*a(n-7) -2*a(n-8) +2*a(n-9) +a(n-10) -a(n-12) -2*a(n-13) +2*a(n-14) +2*a(n-15) -2*a(n-16) -a(n-17) +2*a(n-19) +a(n-20) -4*a(n-21) +a(n-22) +2*a(n-23) -a(n-25) -2*a(n-26) +2*a(n-27) +2*a(n-28) -2*a(n-29) -a(n-30) +a(n-32) +2*a(n-33) -2*a(n-34) -2*a(n-35) +2*a(n-36) +a(n-37) -2*a(n-39) +2*a(n-41) -a(n-42).
If the above empirical recurrence by R. H. Hardin is correct, then the denominator of the g.f. (that determines the above recurrence) equals (1-x)^2*(1-x^2)*(1-x^12)*(1-x^15)*(1-x^20)/((1-x^4)*(1-x^5)). - Petros Hadjicostas, Sep 09 2019
EXAMPLE
Some solutions for n=8:
..2....3....2....2....3....2....2....2....3....2....4....2....3....4....2....2
..2....3....2....3....3....4....5....3....3....2....4....2....3....5....3....2
..2....3....2....3....3....4....5....4....4....3....4....3....3....5....3....2
..2....3....3....3....3....4....5....4....4....3....4....3....3....5....3....4
..2....3....5....3....3....4....5....4....5....4....4....3....3....5....4....4
..3....4....5....3....3....4....5....4....5....5....4....4....3....5....4....5
..3....5....5....3....3....4....5....5....5....5....4....4....4....5....5....5
..3....5....5....3....4....5....5....5....5....5....5....4....4....5....5....5
CROSSREFS
Sequence in context: A315080 A315081 A075343 * A102176 A315082 A315083
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 29 2012
STATUS
approved