login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212778
Half the number of 0..4 arrays of length n+2 with second differences nonzero.
1
56, 252, 1134, 5104, 22972, 103391, 465336, 2094360, 9426184, 42424863, 190943548, 859388488, 3867889651, 17408390437, 78350750657, 352636859298, 1587129076523, 7143265484325, 32150026443551, 144699115914141, 651254025656788
OFFSET
1,1
COMMENTS
Column 4 of A212782.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 7*a(n-2) + 14*a(n-3) + 19*a(n-4) + 18*a(n-5) + 5*a(n-6) - 5*a(n-7) - 2*a(n-8).
Empirical g.f.: x*(56 + 140*x + 238*x^2 + 288*x^3 + 234*x^4 + 47*x^5 - 68*x^6 - 25*x^7) / (1 - 2*x - 7*x^2 - 14*x^3 - 19*x^4 - 18*x^5 - 5*x^6 + 5*x^7 + 2*x^8). - Colin Barker, Jul 21 2018
EXAMPLE
Some solutions for n=5:
..3....3....3....0....3....3....0....4....0....3....2....2....1....0....1....4
..3....3....0....4....4....0....4....0....1....2....0....2....3....0....0....3
..2....0....3....0....4....1....3....3....1....2....3....4....2....4....1....1
..2....4....1....0....2....0....1....0....2....4....4....2....2....3....3....0
..3....3....3....1....4....4....2....3....4....2....1....1....0....0....3....2
..2....4....2....3....4....4....2....3....2....4....4....1....4....0....4....3
..4....1....2....0....0....2....0....0....2....0....4....4....3....3....0....1
CROSSREFS
Cf. A212782.
Sequence in context: A239597 A259039 A158487 * A205235 A205228 A110554
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 27 2012
STATUS
approved