The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158487 a(n) = 64*n^2 - 8. 2
 56, 248, 568, 1016, 1592, 2296, 3128, 4088, 5176, 6392, 7736, 9208, 10808, 12536, 14392, 16376, 18488, 20728, 23096, 25592, 28216, 30968, 33848, 36856, 39992, 43256, 46648, 50168, 53816, 57592, 61496, 65528, 69688, 73976, 78392, 82936 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The identity (16*n^2 - 1)^2 - (64*n^2 - 8)*(2*n)^2 = 1 can be written as A141759(n)^2 - a(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Feb 09 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..10000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: -8*x*(7 + 10*x - x^2)/(x - 1)^3. - Vincenzo Librandi, Feb 09 2012 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 09 2012 MATHEMATICA LinearRecurrence[{3, -3, 1}, {56, 248, 568}, 50] (* Vincenzo Librandi, Feb 09 2012 *) PROG (Magma) I:=[56, 248, 568]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 09 2012 (PARI) for(n=1, 40, print1(64*n^2 - 8", ")); \\ Vincenzo Librandi, Feb 09 2012 CROSSREFS Cf. A005843, A141759. Sequence in context: A234762 A239597 A259039 * A212778 A205235 A205228 Adjacent sequences: A158484 A158485 A158486 * A158488 A158489 A158490 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Mar 20 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 09:50 EST 2022. Contains 358517 sequences. (Running on oeis4.)