login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212742
Number of (w,x,y,z) with all terms in {0,...,n} and max{w,x,y,z}<=2*min{w,x,y,z}.
3
1, 2, 17, 32, 97, 162, 337, 512, 881, 1250, 1921, 2592, 3697, 4802, 6497, 8192, 10657, 13122, 16561, 20000, 24641, 29282, 35377, 41472, 49297, 57122, 66977, 76832, 89041, 101250, 116161, 131072, 149057, 167042, 188497, 209952, 235297
OFFSET
0,2
COMMENTS
Also, the number of (w,x,y,z) with all terms in {0,...,n} and the differences w-x, x-y, y-z all even.
a(n)+A212743(n) = n^4.
For a guide to related sequences, see A211795.
FORMULA
a(n) = 2*a(n-1)+2*a(n-2)-6*a(n-3)+6*a(n-5)-2*a(n-6)-2*a(n-7)+a(n-8).
G.f.: -(1+x^2)*(x^4+10*x^2+1) / ( (1+x)^3*(x-1)^5 ).
a(n) = A212740(n+1) for n>=0.
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Max[w, x, y, z] <= 2 Min[w, x, y, z], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];
Map[t[#] &, Range[0, 40]] (* A212742 *)
LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {1, 2, 17, 32, 97, 162, 337, 512}, 40] (* Harvey P. Dale, May 14 2013 *)
CROSSREFS
Cf. A211795.
Sequence in context: A003336 A344187 A212740 * A178145 A055261 A307690
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 26 2012
STATUS
approved