login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212742 Number of (w,x,y,z) with all terms in {0,...,n} and max{w,x,y,z}<=2*min{w,x,y,z}. 3
1, 2, 17, 32, 97, 162, 337, 512, 881, 1250, 1921, 2592, 3697, 4802, 6497, 8192, 10657, 13122, 16561, 20000, 24641, 29282, 35377, 41472, 49297, 57122, 66977, 76832, 89041, 101250, 116161, 131072, 149057, 167042, 188497, 209952, 235297 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also, the number of (w,x,y,z) with all terms in {0,...,n} and the differences w-x, x-y, y-z all even.

a(n)+A212743(n) = n^4.

For a guide to related sequences, see A211795.

LINKS

Table of n, a(n) for n=0..36.

Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).

FORMULA

a(n) = 2*a(n-1)+2*a(n-2)-6*a(n-3)+6*a(n-5)-2*a(n-6)-2*a(n-7)+a(n-8).

G.f.: -(1+x^2)*(x^4+10*x^2+1) / ( (1+x)^3*(x-1)^5 ).

a(n) = A212740(n+1) for n>=0.

MATHEMATICA

t = Compile[{{n, _Integer}}, Module[{s = 0},

(Do[If[Max[w, x, y, z] <= 2 Min[w, x, y, z], s = s + 1],

{w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];

Map[t[#] &, Range[0, 40]]   (* A212742 *)

LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {1, 2, 17, 32, 97, 162, 337, 512}, 40] (* Harvey P. Dale, May 14 2013 *)

CROSSREFS

Cf. A211795.

Sequence in context: A060387 A003336 A212740 * A178145 A055261 A307690

Adjacent sequences:  A212739 A212740 A212741 * A212743 A212744 A212745

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, May 26 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 15:35 EST 2021. Contains 340254 sequences. (Running on oeis4.)