The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212710 Smallest number k such that the difference between the greatest prime divisor of k^2+1 and the sum of the other prime distinct divisors equals n. 1
 411, 1, 3, 447, 2, 57, 212, 8, 307, 13, 5, 38, 319, 99, 3310, 70, 4, 242, 132, 50, 73, 17, 192, 12, 133, 3532, 41, 22231, 999, 43, 172, 68, 83, 11878, 294, 30, 6, 111, 9, 776, 2059, 922, 818, 46, 1183, 23, 216, 182, 557, 2010, 1818, 3323, 945, 512, 568, 76 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Table of n, a(n) for n=1..56. EXAMPLE a(1) = 411 because 411^2+1 = 2 * 13 * 73 * 89 and 89 - (2 + 13 + 73) = 89 - 88 = 1. MAPLE A212710 := proc(n) local fs, gpf, opf, k ; for k from 1 do fs := numtheory[factorset](k^2+1) ; gpf := max(op(fs)) ; opf := add( f, f=fs)-gpf ; if gpf-opf = n then return k; end if; end do: end proc: seq(A212710(n), n=1..50) ; # R. J. Mathar, Nov 14 2014 MATHEMATICA lst={}; Do[k=1; [While[!2*FactorInteger[k^2+1][[-1, 1]]-Total[Transpose[FactorInteger[k^2+1]][[1]]]==n, k++]]; AppendTo[lst, k], {n, 0, 60}]; lst (* Michel Lagneau, Oct 28 2014 *) PROG (PARI) a(n) = {k = 1; ok = 0; while (!ok, f = factor(k^2+1); nbp = #f~; ok = (f[nbp, 1] - sum(i=1, nbp-1, f[i, 1]) == n); if (!ok, k++); ); k; } \\ Michel Marcus, Nov 09 2014 CROSSREFS Cf. A182011, A014442, A193462. Sequence in context: A176598 A146075 A374270 * A187991 A090123 A055018 Adjacent sequences: A212707 A212708 A212709 * A212711 A212712 A212713 KEYWORD nonn AUTHOR Michel Lagneau, May 24 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 12 03:03 EDT 2024. Contains 375842 sequences. (Running on oeis4.)