login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212570
Number of (w,x,y,z) with all terms in {1,...,n} and |w-x|=|x-y|+|y-z|.
7
0, 1, 6, 23, 52, 105, 178, 287, 424, 609, 830, 1111, 1436, 1833, 2282, 2815, 3408, 4097, 4854, 5719, 6660, 7721, 8866, 10143, 11512, 13025, 14638, 16407, 18284, 20329, 22490, 24831, 27296, 29953, 32742, 35735, 38868, 42217, 45714, 49439
OFFSET
0,3
COMMENTS
For a guide to related sequences, see A211795.
Apart from the first term, partial sums of A220082. [Bruno Berselli, Dec 05 2012]
FORMULA
a(n) = 2a(n-1)+a(n-2)-4a(n-3)+a(n-4)+2a(n-5)-a(n-6).
a(n) = n*(-1-3*(-1)^n+10*n^2)/12. G.f.: x*(x^4+4*x^3+10*x^2+4*x+1)/((x-1)^4*(x+1)^2). [Colin Barker, Oct 04 2012]
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Abs[w - x] == Abs[x - y] + Abs[y - z], s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212570 *)
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 1, 6, 23, 52, 105}, 40] (* Harvey P. Dale, Oct 02 2021 *)
CROSSREFS
Cf. A211795.
Sequence in context: A235332 A026817 A022269 * A272840 A272941 A272922
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 22 2012
STATUS
approved