login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Composite numbers k that divide the imaginary part of (1+2i)^A201629(k).
3

%I #51 Feb 18 2021 00:45:58

%S 4,8,12,16,24,32,36,48,56,64,72,96,108,112,128,132,143,144,156,168,

%T 192,216,224,256,264,272,288,312,324,336,384,392,396,399,432,448,468,

%U 496,504,512,527,528,544,552,576,624,648,672,768,779,784,792,816,864

%N Composite numbers k that divide the imaginary part of (1+2i)^A201629(k).

%C If p is a prime number then p divides the imaginary part of (1+2i)^A201629(p).

%C The numbers of this sequence may be called Fermat pseudoprimes to base 1+2i.

%H Robert Israel, <a href="/A212502/b212502.txt">Table of n, a(n) for n = 1..10000</a>

%H Jose María Grau, A. M. Oller-Marcen, Manuel Rodriguez and D. Sadornil, <a href="http://arxiv.org/abs/1401.4708">Fermat test with Gaussian base and Gaussian pseudoprimes</a>, arXiv:1401.4708 [math.NT], 2014.

%p A201629:= proc(n) if n::even then n elif n mod 4 = 1 then n-1 else n+1 fi end proc:

%p filter:= proc(n) not isprime(n) and type(Powmod(1+2*x, A201629(n), x^2+1, x) mod n, integer) end proc:

%p select(filter, [$2..1000]); # _Robert Israel_, Nov 06 2019

%t A201629[n_]:=Which[Mod[n,4]==3,n+1,Mod[n,4]==1,n-1,True,n]; Select[1+ Range[1000], ! PrimeQ[#] && Im[PowerMod[1 + 2I, A201629[#], #]] == 0 &]

%Y Cf. A201629, A213337, A212601.

%K nonn

%O 1,1

%A _José María Grau Ribas_, May 19 2012

%E Definition revised by _José María Grau Ribas_, Oct 12 2013