login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212502
Composite numbers k that divide the imaginary part of (1+2i)^A201629(k).
3
4, 8, 12, 16, 24, 32, 36, 48, 56, 64, 72, 96, 108, 112, 128, 132, 143, 144, 156, 168, 192, 216, 224, 256, 264, 272, 288, 312, 324, 336, 384, 392, 396, 399, 432, 448, 468, 496, 504, 512, 527, 528, 544, 552, 576, 624, 648, 672, 768, 779, 784, 792, 816, 864
OFFSET
1,1
COMMENTS
If p is a prime number then p divides the imaginary part of (1+2i)^A201629(p).
The numbers of this sequence may be called Fermat pseudoprimes to base 1+2i.
LINKS
Jose María Grau, A. M. Oller-Marcen, Manuel Rodriguez and D. Sadornil, Fermat test with Gaussian base and Gaussian pseudoprimes, arXiv:1401.4708 [math.NT], 2014.
MAPLE
A201629:= proc(n) if n::even then n elif n mod 4 = 1 then n-1 else n+1 fi end proc:
filter:= proc(n) not isprime(n) and type(Powmod(1+2*x, A201629(n), x^2+1, x) mod n, integer) end proc:
select(filter, [$2..1000]); # Robert Israel, Nov 06 2019
MATHEMATICA
A201629[n_]:=Which[Mod[n, 4]==3, n+1, Mod[n, 4]==1, n-1, True, n]; Select[1+ Range[1000], ! PrimeQ[#] && Im[PowerMod[1 + 2I, A201629[#], #]] == 0 &]
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition revised by José María Grau Ribas, Oct 12 2013
STATUS
approved