login
A212493
Let p_n=prime(n), n>=1. Then a(n) is the least prime p which differs from p_n, for which the intervals (p/2,p_n/2), (p,p_n], if p<p_n, or the intervals (p_n/2,p/2), (p_n,p], if p>p_n, contain the same number of primes, and a(n)=0, if no such prime p exists.
5
0, 5, 3, 3, 3, 17, 13, 23, 19, 19, 37, 31, 31, 47, 43, 59, 53, 67, 61, 0, 79, 73, 73, 73, 73, 0, 107, 103, 127, 131, 109, 113, 113, 151, 113, 139, 163, 157, 157, 179, 173, 0, 223, 197, 193, 233, 193, 191, 191, 193, 199, 0, 0, 257, 251, 251, 0, 277, 271, 271
OFFSET
1,2
COMMENTS
a(n)=0 if and only if p_n is a peculiar prime, i.e., simultaneously Ramanujan (A104272) and Labos (A080359) prime (see sequence A164554).
a(n)>p_n if and only if p_n is Labos prime but not Ramanujan prime.
LINKS
Vladimir Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4.
Jonathan Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT], 2011; J. Integer Seq. 14 (2011) Article 11.6.2.
FORMULA
If p_n is not a Labos prime, then a(n) = A080359(n-pi(p_n/2)).
EXAMPLE
Let n=5, p_5=11; p=2 is not suitable, since in (1,5.5) we have 3 primes, while in (2,11] there are 4 primes. Consider p=3. Now in intervals (1.5,5.5) and (3,11] we have the same number (3) of primes. Therefore, a(5)=3. The same value we can obtain by the formula. Since 11 is not a Labos prime, then a(5)=A080359(5-pi(5.5))=A080359(2)=3.
MATHEMATICA
terms = 60; nn = Prime[terms];
R = Table[0, {nn}]; s = 0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s < nn, R[[s + 1]] = k], {k, Prime[3 nn]}];
A104272 = R + 1;
t = Table[0, {nn + 1}]; s = 0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s <= nn && t[[s + 1]] == 0, t[[s + 1]] = k], {k, Prime[3 nn]}];
A080359 = Rest[t];
a[n_] := Module[{}, pn = Prime[n]; If[MemberQ[A104272, pn] && MemberQ[ A080359, pn], Return[0]]; For[p = 2, True, p = NextPrime[p], Which[p<pn, If[PrimePi[pn/2] - PrimePi[p/2] == PrimePi[pn] - PrimePi[p], Return[p]], p>pn, If[PrimePi[p/2] - PrimePi[pn/2] == PrimePi[p] - PrimePi[pn], Return[p]]]]];
Array[a, terms] (* Jean-François Alcover, Dec 04 2018, after T. D. Noe in A104272 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved