The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212263 Main diagonal of symmetric array defined by the recurrence T(n,1)=1, T(1,k)=1, for n >= k: T(n,k) = Sum_{i=1..k-1} T(n-i,k), for n < k: T(n,k) = Sum_{i=1..n-1} T(k-i,n). 0
 1, 1, 2, 5, 16, 58, 222, 869, 3438, 13672, 54518, 217706, 870036, 3478446, 13910128, 55632657, 222513784, 890019102, 3559999490, 14239834188, 56958988812, 227835217794, 911339311462, 3645353954182, 14581408883620 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(n) mod 2 = A023900(n) mod 2. The recurrence mentioned in the title is the same as the recurrence in array A191898 but without the minus signs. LINKS FORMULA Main diagonal of array defined by: T(n,1)=1, T(1,k)=1, n >= k: Sum_{i=1..k-1} T(n-i,k), n < k: Sum_{i=1..n-1} T(k-i,n). MATHEMATICA Clear[nn, t, n, k]; nn = 25; t[n_, 1] = 1; t[1, k_] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k], {i, 1, k - 1}], Sum[t[k - i, n], {i, 1, n - 1}]]; Table[t[n, n], {n, 1, nn}] CROSSREFS Cf. A023900, A191898. Sequence in context: A286946 A184596 A149978 * A149979 A262441 A328296 Adjacent sequences:  A212260 A212261 A212262 * A212264 A212265 A212266 KEYWORD nonn AUTHOR Mats Granvik, May 12 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 10:03 EDT 2021. Contains 345162 sequences. (Running on oeis4.)