OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..260
FORMULA
G.f. satisfies: A(x) = 1 + x*(A(x) + x*A'(x))^4.
a(n) ~ c * 4^n * n! * n^(3/2), where c = 0.06185263969861377609335... - Vaclav Kotesovec, Aug 24 2017
EXAMPLE
G.f.: A(x) = 1 + x + 8*x^2 + 120*x^3 + 2528*x^4 + 66704*x^5 + 2080128*x^6 +...
Related expansions:
d/dx x*A(x) = 1 + 2*x + 24*x^2 + 480*x^3 + 12640*x^4 + 400224*x^5 +...
A'(x) = 1 + 16*x + 360*x^2 + 10112*x^3 + 333520*x^4 + 12480768*x^5 +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+x*deriv(x*A)^4); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 21 2012
STATUS
approved