login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211825
G.f. satisfies: A(x) = 1 + x*( d/dx x*A(x) )^4.
3
1, 1, 8, 120, 2528, 66704, 2080128, 74115840, 2952926720, 129637843968, 6205231472640, 321275171444736, 17880710254829568, 1064356462925701120, 67476012302577762304, 4539384115900126199808, 323034928746773883518976, 24248087962137553507450880
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = 1 + x*(A(x) + x*A'(x))^4.
a(n) ~ c * 4^n * n! * n^(3/2), where c = 0.06185263969861377609335... - Vaclav Kotesovec, Aug 24 2017
EXAMPLE
G.f.: A(x) = 1 + x + 8*x^2 + 120*x^3 + 2528*x^4 + 66704*x^5 + 2080128*x^6 +...
Related expansions:
d/dx x*A(x) = 1 + 2*x + 24*x^2 + 480*x^3 + 12640*x^4 + 400224*x^5 +...
A'(x) = 1 + 16*x + 360*x^2 + 10112*x^3 + 333520*x^4 + 12480768*x^5 +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+x*deriv(x*A)^4); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 21 2012
STATUS
approved