login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211766
Number of -3..3 arrays x(i) of n+1 elements i=1..n+1 with set{t,u,v in 0,1}((x[i+t]+x[j+u]+x[k+v])*(-1)^(t+u+v)) having two, three, four, five, six, seven or eight distinct values for every i,j,k<=n.
1
48, 330, 2264, 15512, 106128, 725040, 4946132, 33693740, 229205328, 1557067320, 10563664724, 71575622300, 484371525216, 3273973248600, 22104207166532, 149072726510492, 1004302970917488, 6759180631475928, 45446982868078004
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 24*a(n-1) - 206*a(n-2) + 684*a(n-3) - 251*a(n-4) - 1740*a(n-5) - 1210*a(n-6) - 300*a(n-7) - 24*a(n-8).
Empirical g.f.: 2*x*(24 - 411*x + 2116*x^2 - 1838*x^3 - 6724*x^4 - 4393*x^5 - 1062*x^6 - 84*x^7) / ((1 - 6*x - x^2)*(1 - 6*x - 2*x^2)*(1 - 6*x - 3*x^2)*(1 - 6*x - 4*x^2)). - Colin Barker, Jul 20 2018
EXAMPLE
Some solutions for n=5:
..1...-1....3....1...-1...-1...-1....2...-3...-2...-3....2...-1....2....3....0
..1....3...-1....0....1...-1...-3....0...-2....1....3....3...-3...-3...-3...-3
.-1...-3...-1...-3....0....1....1....3....2...-1...-2...-3....1...-3....0....0
..1...-1...-2....1...-3....2....1...-3...-3...-1...-2...-3....2....0....2....1
.-3...-1...-2...-2....2....3...-2....0....1....1...-1....3...-2....2....3....0
..1...-2....1....2....3....2....3....1....1...-1...-2...-1...-2...-3....0...-1
CROSSREFS
Sequence in context: A211746 A211755 A211504 * A187164 A110275 A348120
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 20 2012
STATUS
approved