login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211504
Number of -3..3 arrays x(i) of n+1 elements i=1..n+1 with x(i)+x(j), x(i+1)+x(j+1), -(x(i)+x(j+1)), and -(x(i+1)+x(j)) having two, three or four distinct values for every i<=n and j<=n.
1
48, 330, 2262, 15474, 105642, 719838, 4895886, 33239874, 225294570, 1524529134, 10300146510, 69486664818, 468097569162, 3149005428126, 21156149373582, 141954447726498, 951332764533354, 6368070500470926, 42578969613094542
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 24*a(n-1) - 210*a(n-2) + 756*a(n-3) - 659*a(n-4) - 1164*a(n-5) - 390*a(n-6) - 36*a(n-7).
Empirical g.f.: 6*x*(8 - 137*x + 737*x^2 - 967*x^3 - 1427*x^4 - 460*x^5 - 42*x^6) / ((1 - 6*x)*(1 - 6*x - x^2)*(1 - 6*x - 2*x^2)*(1 - 6*x - 3*x^2)). - Colin Barker, Jul 18 2018
EXAMPLE
Some solutions for n=5:
.-2...-3...-3...-2...-1...-2....0...-1...-3...-1...-3...-3....1...-1....2....0
.-3....0...-1....2...-2....2...-2....3....1...-1....2...-2....1....3....3....3
..3....3....1....3...-2...-2...-3...-2...-1....2...-2...-2....0...-3...-1...-1
..3....0....3....2...-2....2...-2...-2....3....0...-2....1....1....2...-1...-2
..3....2....1...-2...-3....3....3....3...-3...-2...-2...-2....3...-1....3....1
..2...-2...-3....1...-2....1....1...-3....0...-3....2...-2....1...-3...-2...-2
CROSSREFS
Sequence in context: A211735 A211746 A211755 * A211766 A187164 A110275
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 13 2012
STATUS
approved