login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211564
Number of nonnegative integer arrays of length n+4 with new values 0 upwards introduced in order, and containing the value n-1.
1
52, 202, 813, 3046, 10096, 29503, 77078, 183074, 401337, 822277, 1590604, 2928879, 5168035, 8786128, 14456683, 23108105, 35995730, 54788196, 81669919, 119461564, 171760506, 243103381, 339152932, 466911460, 634963295, 853748807, 1135872582
OFFSET
1,1
COMMENTS
Row 5 of A211561.
LINKS
FORMULA
Empirical: a(n) = (1/384)*n^8 + (1/32)*n^7 + (95/576)*n^6 + (71/120)*n^5 + (2155/1152)*n^4 + (167/32)*n^3 + (3301/288)*n^2 + (2119/120)*n + 15.
Empirical: a(n) = sum{j in n..n+4}stirling2(n+4,j).
Conjectures from Colin Barker, Jul 19 2018: (Start)
G.f.: x*(52 - 266*x + 867*x^2 - 1367*x^3 + 1534*x^4 - 1097*x^5 + 497*x^6 - 130*x^7 + 15*x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)
EXAMPLE
Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....0....1....1....1....1....1....0....1....1....1....1
..2....1....2....2....2....1....2....2....2....2....2....1....0....2....0....2
..3....0....3....1....0....2....3....3....2....0....2....0....1....3....2....3
..4....2....2....0....3....0....4....4....3....1....1....2....2....3....2....0
..5....3....2....3....4....3....2....4....3....3....3....3....2....2....2....4
..5....2....1....3....1....4....5....1....4....3....1....3....3....4....3....1
..4....0....4....4....0....3....0....1....5....4....4....2....0....5....0....0
..1....4....5....4....2....4....0....1....3....0....0....4....4....6....4....1
CROSSREFS
Cf. A211561.
Sequence in context: A161478 A288919 A260549 * A346825 A346858 A251287
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 15 2012
STATUS
approved