login
A161478
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+113)^2 = y^2.
4
0, 52, 175, 339, 615, 1312, 2260, 3864, 7923, 13447, 22795, 46452, 78648, 133132, 271015, 458667, 776223, 1579864, 2673580, 4524432, 9208395, 15583039, 26370595, 53670732, 90824880, 153699364, 312816223, 529366467, 895825815, 1823226832, 3085374148
OFFSET
1,2
COMMENTS
Corresponding values y of solutions (x, y) are in A161479.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (129+44*sqrt(2))/113 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (16131+6970*sqrt(2))/113^2 for n mod 3 = 0.
FORMULA
a(n) = 6*a(n-3)-a(n-6)+226 for n > 6; a(1)=0, a(2)=52, a(3)=175, a(4)=339, a(5)=615, a(6)=1312.
G.f.: x*(52+123*x+164*x^2-36*x^3-41*x^4-36*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 113*A001652(k) for k >= 0.
MATHEMATICA
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 52, 175, 339, 615, 1312, 2260}, 72] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2012 *)
PROG
(PARI) {forstep(n=0, 100000000, [3, 1], if(issquare(2*n^2+226*n+12769), print1(n, ", ")))}
CROSSREFS
Cf. A161479, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A161480 (decimal expansion of (129+44*sqrt(2))/113), A161481 (decimal expansion of (16131+6970*sqrt(2))/113^2).
Sequence in context: A345240 A292172 A166390 * A288919 A260549 A211564
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Jun 13 2009
STATUS
approved