login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211550
Number of (n+1)X(n+1) -9..9 symmetric matrices with every 2X2 subblock having sum zero and three distinct values
1
150, 330, 640, 1190, 2172, 3922, 7052, 12734, 22944, 41816, 76046, 140318, 258302, 482748, 900018, 1702150, 3211388, 6136202, 11697780, 22541648, 43345282, 84091266, 162828522, 317556046, 618284124, 1210700090, 2367405022, 4650241676
OFFSET
1,1
COMMENTS
Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) +6*a(n-2) -66*a(n-3) +32*a(n-4) +343*a(n-5) -396*a(n-6) -874*a(n-7) +1475*a(n-8) +1066*a(n-9) -2702*a(n-10) -373*a(n-11) +2577*a(n-12) -367*a(n-13) -1195*a(n-14) +320*a(n-15) +210*a(n-16) -60*a(n-17)
EXAMPLE
Some solutions for n=3
..4.-2..4..0....6.-3..0.-6....1..3..1.-2....4..2..4.-3....9.-2..9.-2
.-2..0.-2.-2...-3..0..3..3....3.-7..3.-2....2.-8..2.-3...-2.-5.-2.-5
..4.-2..4..0....0..3.-6..0....1..3..1.-2....4..2..4.-3....9.-2..9.-2
..0.-2..0.-4...-6..3..0..6...-2.-2.-2..3...-3.-3.-3..2...-2.-5.-2.-5
CROSSREFS
Sequence in context: A063829 A291959 A210643 * A212465 A273322 A206066
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 15 2012
STATUS
approved