OFFSET
1,1
COMMENTS
Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..112
FORMULA
Empirical: a(n) = 75*a(n-1) -2510*a(n-2) +49200*a(n-3) -622175*a(n-4) +5253075*a(n-5) -29416155*a(n-6) +102987225*a(n-7) -184111448*a(n-8) -476940*a(n-9) +472118829*a(n-10) -56520825*a(n-11) -794496080*a(n-12) -750911850*a(n-13) -339742508*a(n-14) -86830200*a(n-15) -12751696*a(n-16) -999360*a(n-17) -32256*a(n-18)
EXAMPLE
Some solutions for n=3
.-6..3..1..1....5.-6..3.-2...-8..4.-7..4...-5..3..1..3...-1.-2..1.-3
..3..0.-4..2...-6..7.-4..3....4..0..3..0....3.-1.-3.-1...-2..5.-4..6
..1.-4..8.-6....3.-4..1..0...-7..3.-6..3....1.-3..7.-3....1.-4..3.-5
..1..2.-6..4...-2..3..0.-1....4..0..3..0....3.-1.-3.-1...-3..6.-5..7
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 12 2012
STATUS
approved