login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203826
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no 2X2 subblock having equal diagonal elements or equal antidiagonal elements
9
144, 1296, 1296, 11664, 27216, 11664, 104976, 571536, 571536, 104976, 944784, 12002256, 28005264, 12002256, 944784, 8503056, 252047376, 1372257936, 1372257936, 252047376, 8503056, 76527504, 5292994896, 67240638864
OFFSET
1,1
COMMENTS
Table starts
.......144..........1296............11664...............104976
......1296.........27216...........571536.............12002256
.....11664........571536.........28005264...........1372257936
....104976......12002256.......1372257936.........157025515248
....944784.....252047376......67240638864.......17968205387664
...8503056....5292994896....3294791304336.....2056114528873776
..76527504..111152892816..161444773912464...235282648691687184
.688747536.2334210749136.7910793921710736.26923572225438510384
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 16*9^n
k=2: a(n) = 1296*21^(n-1)
k=3: a(n) = 11664*49^(n-1)
k=4: a(n) = 117*a(n-1) -34398*a(n-3) +86436*a(n-4)
k=5: a(n) = 303*a(n-1) -8127*a(n-2) -394891*a(n-3) +4091304*a(n-4) +21176820*a(n-5) -92236816*a(n-6)
k=6: (order 16 recurrence)
k=7: (order 45 recurrence)
EXAMPLE
Some solutions for n=4 k=3
..0..3..0..2....0..2..0..1....1..1..0..0....1..0..0..0....3..3..3..2
..0..2..0..1....3..3..0..1....2..3..2..1....1..2..2..1....1..0..1..0
..0..1..3..2....1..1..2..1....1..0..0..3....0..3..3..3....1..2..1..3
..0..2..3..2....2..3..2..0....1..3..1..1....1..1..0..0....3..2..0..0
..3..1..3..0....1..1..2..3....0..2..0..2....2..2..2..1....3..2..3..1
CROSSREFS
Sequence in context: A222349 A133062 A211473 * A261655 A203819 A222515
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jan 06 2012
STATUS
approved