This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211398 E.g.f.: Sum_{n>=0} log( Sum_{k>=0} (n+k)^k*x^k/k! )^n / n!. 0
 1, 2, 14, 153, 2262, 42120, 945823, 24870937, 749702348, 25490350284, 965219424913, 40287663094503, 1837912330721162, 90988147658574582, 4858595700832370019, 278371180944699911227, 17034913752075240500920, 1108950617553341656112312, 76523438074756638449399565 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare to the trivial identities: (1) Sum_{n>=0} log( Sum_{k>=0} n^k*x^k/k! )^n/n! = Sum_{n>=0} n^n*x^n/n!; (2) Sum_{n>=0} log( Sum_{k>=0} k^k*x^k/k! )^n/n! = Sum_{n>=0} n^n*x^n/n!. LINKS FORMULA E.g.f.: Sum_{n>=0} log( (LambertW(-x)/(-x))^n / (1+LambertW(-x)) )^n / n!. E.g.f.: Sum_{n>=0} [ Sum_{k>=1} (k^(k-1)*n + A001865(k))*x^k/k! ]^n / n!. EXAMPLE E.g.f.: A(x) = 1 + 2*x + 14*x^2/2! + 153*x^3/3! + 2262*x^4/4! + 42120*x^5/5! +... such that A(x) = 1 + log(F(x,1)) + log(F(x,2))^2/2! + log(F(x,3))^3/3! + log(F(x,4))^4/4! +... where F(x,n) = 1 + (n+1)*x + (n+2)^2*x^2/2! + (n+3)^3*x^3/3! + (n+4)^4*x^4/4! + (n+5)^5*x^5/5! +...+ (n+k)^k*x^k/k! +... Also, A(x) = 1 + G(x,1) + G(x,2)^2/2! + G(x,3)^3/3! + G(x,4)^4/4! +...+ G(x,n)^n/n! +... where G(x,n) = log( (LambertW(-x)/(-x))^n / (1+LambertW(-x)) ): G(x,n) = (n+1)*x + (2*n+3)*x^2/2! + (9*n+17)*x^3/3! + (64*n+142)*x^4/4! + (625*n+1569)*x^5/5! +...+ (k^(k-1)*n + A001865(k))*x^k/k! +... Related expansion: Sum_{n>=0} n^n*log(LambertW(-x)/(-x))^n/n! = 1/(1+LambertW(LambertW(-x))); 1/(1+LambertW(LambertW(-x))) = 1 + x + 6*x^2/2! + 60*x^3/3! + 836*x^4/4! +... PROG (PARI) {a(n)=n!*polcoeff(sum(m=0, n, log(sum(k=0, n, (m+k)^k*x^k/k! +x*O(x^n)))^m/m!), n)} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A000169, A001865. Sequence in context: A036079 A121227 A250916 * A219430 A301931 A060193 Adjacent sequences:  A211395 A211396 A211397 * A211399 A211400 A211401 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 10 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 03:27 EST 2019. Contains 329872 sequences. (Running on oeis4.)