login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210686
Primes p = 1 mod 6 such that all three iterations p=(6p+1) give primes = 1 mod 6.
2
61, 6361, 10771, 11311, 17791, 19471, 20011, 24391, 25951, 30091, 35251, 41911, 45631, 47431, 58711, 67891, 72271, 74161, 86341, 89821, 91711, 93001, 95311, 103171, 109321, 124021, 124171, 132961, 149491, 153871, 155731, 156151, 176461, 179461, 197551, 213181, 217681
OFFSET
1,1
COMMENTS
All terms are = 1 mod 30.
Note that 4th iteration gives composite integer = 5 mod 10.
(a(n)-1)/30 = 2, 212, 359, 377, 593, 649, 667, 813, 865,...
EXAMPLE
a(1) = 61 because 6*61 + 1 = 367, 6*367 + 1 = 2203, and 6*2203 + 1 = 13219 are all primes = 1 mod 6.
MATHEMATICA
p=31; Reap[Do[If[Union[PrimeQ[NestList[6#+1&, p, 3]]]=={True}, Sow[p]]; p=p+30, {10^4}]][[2, 1]]
PROG
(PARI) {p=31; for(i=1, 10^4, p=p+30; if(isprime(p)&&isprime(q=6*p+1)&&isprime(r=6*q+1)&&isprime(6*r+1), print1(p", ")))}
(PARI) forprime(p=2, 1e6, if(p%30<2&&isprime(6*p+1)&&isprime(36*p+7)&&isprime(216*p+43), print1(p", "))) \\ Charles R Greathouse IV, Mar 29 2012
(Magma) [p: p in PrimesUpTo(22*10^4) | p mod 6 eq 1 and forall{q: i in [1..3] | IsPrime(q) where q is (6^i*(5*p+1)-1) div 5}]; // Bruno Berselli, Mar 29 2012
CROSSREFS
Subsequence of A002476.
Sequence in context: A167736 A015288 A219113 * A103915 A090823 A093261
KEYWORD
nonn
AUTHOR
Zak Seidov, Mar 28 2012
STATUS
approved