login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210644
Decimal expansion of cos(2*Pi/17).
8
9, 3, 2, 4, 7, 2, 2, 2, 9, 4, 0, 4, 3, 5, 5, 8, 0, 4, 5, 7, 3, 1, 1, 5, 8, 9, 1, 8, 2, 1, 5, 6, 3, 3, 8, 6, 2, 6, 2, 5, 8, 7, 7, 7, 7, 9, 4, 5, 1, 1, 6, 9, 2, 8, 2, 4, 8, 3, 5, 0, 0, 1, 1, 8, 6, 0, 5, 3, 6, 0, 4, 6, 5, 6, 9, 6, 4, 4, 4, 9, 8, 1, 2, 8, 0, 7, 4
OFFSET
0,1
COMMENTS
Constant related to the constructibility of the regular heptadecagon. The "Disquisitiones Arithmeticae" of Gauss contains the following equivalent expression:
-1/16+(1/16)*sqrt(17)+(1/16)*sqrt(34-2*sqrt(17))+(1/8)*sqrt(17+3*sqrt(17)-sqrt(34-2*sqrt(17))-2*sqrt((34+2*sqrt(17)))).
This value is a root of the polynomial 256*x^8+128*x^7-448*x^6-192*x^5+240*x^4+80*x^3-40*x^2-8*x+1.
The continued fraction expansion of cos(2*Pi/17) is 0, 1, 13, 1, 4, 4, 2, 1, 1, 2, 4, 425, 1, 2, 5, 3, 1, 1, 1, 1, 1, 4, 4, 10, 3, 2, 1,...
REFERENCES
C. F. Gauss, Disquisitiones Arithmeticae, 1801 (Lipsia), p. 662 (par. 365).
Ian Stewart, Professor Stewart's Cabinet of Mathematical Curiosities, BASIC Books, a member of the Perseus Books Group, NY, 2009, "Why Gauss Became a Mathematician", pp. 146 - 149.
Ian Stewart, Why Beauty Is Truth, A History of Symmetry, BASIC Books, a member of the Perseus Books Group, NY 2007, pp. 136.
LINKS
Brady Haran and David Eisenbud, Heptadecagon and Fermat Primes (the math bit), Numberphile YouTube video, 2015.
Eric Weisstein's World of Mathematics, Heptadecagon.
Wikipedia, Heptadecagon.
FORMULA
Equals (i^(4/17) - i^(30/17))/2. - Peter Luschny, Apr 04 2020
EXAMPLE
cos(2*Pi/17) = 0.9324722294043558045731158918215633862625877779451169...
MATHEMATICA
RealDigits[Cos[2Pi/17], 10, 105][[1]]
RealDigits[(-1 + Sqrt[17] + Sqrt[34 - 2 Sqrt[17]] + Sqrt[68 + 12 Sqrt[17] - 4 Sqrt[170 + 38 Sqrt[17]]])/16, 10, 111][[1]] (* Robert G. Wilson v, Aug 09 2012 *)
PROG
(PARI) cos(2*Pi/17)
(Maxima) fpprec:90; ev(bfloat(cos(2*%pi/17)));
CROSSREFS
Sequence in context: A176516 A337768 A372273 * A072559 A019941 A200624
KEYWORD
nonn,cons,changed
AUTHOR
Bruno Berselli, Mar 26 2012
STATUS
approved