login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210577
Natural numbers equal to the sum of two nontrivial binomial coefficients, sorted, duplicates removed.
2
12, 16, 20, 21, 25, 26, 27, 30, 31, 34, 35, 36, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 70, 71, 72, 73, 75, 76, 77, 80, 81, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 104, 105, 106, 110
OFFSET
1,1
COMMENTS
Nontrivial binomial coefficients are C(n,k) with 2 <= k <= n-2.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1) = 12 since 6 is the lowest nontrivial binomial coefficient and 6+6 = 12.
MATHEMATICA
lim = 110; bc = {}; n = 4; While[c = Select[Binomial[n, Range[2, Floor[n/2]]], # <= lim &]; Length[c] > 0, bc = Join[bc, c]; n++]; bc = Sort[bc]; Select[Union[Flatten[Outer[Plus, bc, bc]]], # <= lim &] (* T. D. Noe, Mar 22 2012 *)
PROG
(PARI) list(lim)=my(v=List(), t, u=v); for(n=4, sqrtint(2*lim)+1, for(k=2, n\2, t=binomial(n, k); if(t>lim, break, listput(v, t)))); v=vecsort(Vec(v), , 8); for(i=1, #v, for(j=1, i, if(v[i]+v[j]>lim, break, listput(u, v[i]+v[j])))); vecsort(Vec(u), , 8) \\ Charles R Greathouse IV, Apr 03 2012
CROSSREFS
Two-term sums of members of A006987.
Cf. A007318.
Sequence in context: A054281 A171955 A225071 * A231903 A364405 A337703
KEYWORD
easy,nonn
AUTHOR
Douglas Latimer, Mar 22 2012
STATUS
approved