Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 May 18 2020 06:17:16
%S 1,3,1,5,6,1,7,15,10,1,9,28,35,15,1,11,45,84,70,21,1,13,66,165,210,
%T 126,28,1,15,91,286,495,462,210,36,1,17,120,455,1001,1287,924,330,45,
%U 1,19,153,680,1820,3003,3003,1716,495,55,1,21,190,969,3060,6188
%N Triangle of coefficients of polynomials v(n,x) jointly generated with A172431; see the Formula section.
%C Row sums: -1+odd-indexed Fibonacci numbers
%C Alternating row sums: 1,2,0,1,2,0,1,2,0,...
%C For a discussion and guide to related arrays, see A208510.
%F u(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
%F v(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1
%F where u(1,x)=1, v(1,x)=1.
%e From _Paul Weisenhorn_, May 17 2020 : (Start)
%e First five rows of v(n.x):
%e 1
%e 3 1
%e 5 6 1
%e 7 15 10 1
%e 9 28 35 15 1
%e First three polynomials v(n,x): 1, 3 + x, 5 + 6x + x^2. (End)
%e From _Paul Weisenhorn_, May 14 2020: (Start)
%e First five rows of u(n,x):
%e 1
%e 1 2
%e 1 4 3
%e 1 6 10 4
%e 1 8 21 20 5
%e First three polynomials u(n,x): 1, 1 + 2x, 1 + 4x + 3x^2. (End)
%t u[1, x_] := 1; v[1, x_] := 1; z = 16;
%t u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
%t v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
%t Table[Expand[u[n, x]], {n, 1, z/2}]
%t Table[Expand[v[n, x]], {n, 1, z/2}]
%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t TableForm[cu]
%t Flatten[%] (* A172431 *)
%t Table[Expand[v[n, x]], {n, 1, z}]
%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t TableForm[cv]
%t Flatten[%] (* A210551 *)
%Y Cf. A172431, A208510.
%K nonn,tabl
%O 1,2
%A _Clark Kimberling_, Mar 22 2012