login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A210511 Primes formed by concatenating k, k, and 1 for k >= 1. 8
331, 661, 881, 991, 18181, 20201, 21211, 26261, 27271, 32321, 33331, 41411, 48481, 51511, 54541, 57571, 60601, 65651, 69691, 71711, 78781, 86861, 89891, 90901, 92921, 98981, 99991, 1041041, 1051051, 1131131, 1191191, 1201201, 1221221, 1231231, 1261261, 1281281 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
This sequence is similar to A030458 and A052089.
LINKS
MATHEMATICA
Select[Table[FromDigits[Flatten[{IntegerDigits[n], IntegerDigits[n], {1}}]], {n, 100}], PrimeQ] (* Alonso del Arte, Jan 27 2013 *)
With[{nn=200}, Select[FromDigits[Flatten[IntegerDigits[#]]]&/@Thread[ {Range[ nn], Range[nn], 1}], PrimeQ]] (* Harvey P. Dale, Aug 17 2013 *)
PROG
(Python)
import numpy as np
def factors(n):
return reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))
for i in range(1, 2000):
p1=int(str(i)+str(i)+"1")
if len(factors(p1))<3:
print(p1)
(Python)
from sympy import isprime
from itertools import count, islice
def agen(): yield from filter(isprime, (int(str(k)+str(k)+'1') for k in count(1)))
print(list(islice(agen(), 36))) # Michael S. Branicky, Jul 26 2022
(Magma) [nn1: n in [1..130] | IsPrime(nn1) where nn1 is Seqint([1] cat Intseq(n) cat Intseq(n))]; // Bruno Berselli, Jan 30 2013
CROSSREFS
Sequence in context: A020373 A142601 A210534 * A142824 A038647 A152311
KEYWORD
nonn,easy,base
AUTHOR
Abhiram R Devesh, Jan 26 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 25 11:16 EST 2024. Contains 370325 sequences. (Running on oeis4.)