login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210511
Primes formed by concatenating k, k, and 1 for k >= 1.
8
331, 661, 881, 991, 18181, 20201, 21211, 26261, 27271, 32321, 33331, 41411, 48481, 51511, 54541, 57571, 60601, 65651, 69691, 71711, 78781, 86861, 89891, 90901, 92921, 98981, 99991, 1041041, 1051051, 1131131, 1191191, 1201201, 1221221, 1231231, 1261261, 1281281
OFFSET
1,1
COMMENTS
This sequence is similar to A030458 and A052089.
LINKS
MATHEMATICA
Select[Table[FromDigits[Flatten[{IntegerDigits[n], IntegerDigits[n], {1}}]], {n, 100}], PrimeQ] (* Alonso del Arte, Jan 27 2013 *)
With[{nn=200}, Select[FromDigits[Flatten[IntegerDigits[#]]]&/@Thread[ {Range[ nn], Range[nn], 1}], PrimeQ]] (* Harvey P. Dale, Aug 17 2013 *)
PROG
(Python)
import numpy as np
def factors(n):
return reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))
for i in range(1, 2000):
p1=int(str(i)+str(i)+"1")
if len(factors(p1))<3:
print(p1)
(Python)
from sympy import isprime
from itertools import count, islice
def agen(): yield from filter(isprime, (int(str(k)+str(k)+'1') for k in count(1)))
print(list(islice(agen(), 36))) # Michael S. Branicky, Jul 26 2022
(Magma) [nn1: n in [1..130] | IsPrime(nn1) where nn1 is Seqint([1] cat Intseq(n) cat Intseq(n))]; // Bruno Berselli, Jan 30 2013
CROSSREFS
Sequence in context: A020373 A142601 A210534 * A142824 A038647 A152311
KEYWORD
nonn,easy,base
AUTHOR
Abhiram R Devesh, Jan 26 2013
STATUS
approved