Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Feb 18 2021 00:45:22
%S 15,35,143,323,899,1763,3599,4641,5183,10403,11663,13585,19043,22499,
%T 32399,35581,36863,39203,51983,57599,72899,79523,97343,121103,176399,
%U 186623,213443,272483,324899,359999,381923,412163,435599,446641,622081,656099,675683
%N Numbers k that form a primitive Pythagorean triple with k' and sqrt(k^2 + k'^2), where k' is the arithmetic derivative of k.
%C A037074 is a subsequence of this sequence.
%C If k is the product of a pair of twin primes we have k=p(p+2), k'=2(p+1) and sqrt(k^2+k'^2)=(p+1)^2+1=p(p+2)+2=k+2. These numbers are relatively prime and therefore they form a primitive Pythagorean triple.
%C Also in the sequence are the following numbers with four distinct prime factors:
%C 4641 = 3*7*13*17 [form p(p+4)*q(q+4)],
%C 13585 = 5*11*13*19 [form p(p+6)*q(q+6)],
%C 35581 = 7*13*17*23 [form p(p+6)*q(q+6)],
%C 446641 = 13*17*43*47 [form p(p+4)*q(q+4)],
%C 622081 = 17*23*37*43 [form p(p+6)*q(q+6)],
%C 700321 = 19*29*31*41 [form p(p+10)*q(q+10)],
%C From _Ray Chandler_, Jan 25 2017: (Start)
%C 24887581 = 47*53*97*103 [form p(p+6)*q(q+6)],
%C 43518577 = 59*67*101*109 [form p(p+8)*q(q+8)],
%C 115539901 = 83*97*113*127 [form p(p+14)*q(q+14)],
%C 158682817 = 89*101*127*139 [form p(p+12)*q(q+12)],
%C 305162941 = 103*113*157*167 [form p(p+10)*q(q+10)],
%C 1093514641 = 103*107*313*317 [form p(p+4)*q(q+4)],
%C 1415940061 = 167*193*197*223 [form p(p+26)*q(q+26)].
%C And one term with six distinct prime factors:
%C 650344079 = 7*11*37*53*59*73. (End)
%H Ray Chandler, <a href="/A210503/b210503.txt">Table of n, a(n) for n = 1..500</a> (terms 1..100 from Paolo P. Lava)
%e m=57599, m'=480, sqrt(57599^2 + 480^2) = 57601.
%p with(numtheory);
%p A210503:= proc(q)
%p local a,n,p;
%p for n from 1 to q do
%p a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
%p if trunc(sqrt(n^2+a^2))=sqrt(n^2+a^2) and gcd(n,gcd(a,n^2+a^2))=1 then print(n); fi;
%p od; end:
%p A210503(100000);
%o (Python)
%o from sympy import factorint
%o from gmpy2 import mpz, is_square, gcd
%o A210503 = []
%o for n in range(2,10**5):
%o ....nd = sum([mpz(n*e/p) for p,e in factorint(n).items()])
%o ....if is_square(nd**2+n**2) and gcd(gcd(n,nd),mpz(sqrt(nd**2+n**2))) == 1:
%o ........A210503.append(n) # _Chai Wah Wu_, Aug 21 2014
%Y Cf. A003415, A009003, A009004, A037074.
%K nonn
%O 1,1
%A _Paolo P. Lava_, Jan 25 2013