login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210475
Let p_(4,1)(m) be the m-th prime == 1 (mod 4). Then a(n) is the smallest p_(4,1)(m) such that the interval(p_(4,1)(m)*n, p_(4,1)(m+1)*n) contains exactly one prime == 1 (mod 4).
3
13, 13, 29, 13, 193, 97, 97, 277, 457, 1193, 109, 229, 937, 397, 349, 1597, 2137, 937, 5569, 5737, 2833, 1549, 6733, 7477, 5077, 3457, 877, 4153, 12277, 11113, 8689, 14029, 11113, 5233, 24109, 14737, 26713, 1297, 77797, 12097, 51577, 57973, 33409, 30493, 49429, 112237, 10333, 143137
OFFSET
2,1
COMMENTS
The limit of a(n) as n goes to infinity is infinity.
Conjecture: for n >= 12, every a(n) is the lesser of a pair of cousin primes p and p+4, (see A023200).
MATHEMATICA
myPrime=Select[Table[Prime[n], {n, 3000000}], Mod[#, 4]==1&];
binarySearch[lst_, find_]:=Module[{lo=1, up=Length[lst], v}, (While[lo<=up, v=Floor[(lo+up)/2]; If[lst[[v]]-find==0, Return[v]]; If[lst[[v]]<find, lo=v+1, up=v-1]]; 0)];
myPrimeQ[n_]:=binarySearch[myPrime, n];
nextMyPrime[n_, offset_Integer:1]:=myPrime[[myPrimeQ[NextPrime[n, NestWhile[#1+1&, 1, !myPrimeQ[NextPrime[n, #1]]>0&]]]+offset-1]];
z=1; (*contains exactly ONE myPrime in the interval*)
Table[myPrime[[NestWhile[#1+1&, 1, !((nextMyPrime[n myPrime[[#1]], z+1]>n myPrime[[#1+1]]))&]]], {n, 2, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved