The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210475 Let p_(4,1)(m) be the m-th prime == 1 (mod 4). Then a(n) is the smallest p_(4,1)(m) such that the interval(p_(4,1)(m)*n, p_(4,1)(m+1)*n) contains exactly one prime == 1 (mod 4). 3
 13, 13, 29, 13, 193, 97, 97, 277, 457, 1193, 109, 229, 937, 397, 349, 1597, 2137, 937, 5569, 5737, 2833, 1549, 6733, 7477, 5077, 3457, 877, 4153, 12277, 11113, 8689, 14029, 11113, 5233, 24109, 14737, 26713, 1297, 77797, 12097, 51577, 57973, 33409, 30493, 49429, 112237, 10333, 143137 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS The limit of a(n) as n goes to infinity is infinity. Conjecture: for n >= 12, every a(n) is the lesser of a pair of cousin primes p and p+4, (see A023200). LINKS MATHEMATICA myPrime=Select[Table[Prime[n], {n, 3000000}], Mod[#, 4]==1&]; binarySearch[lst_, find_]:=Module[{lo=1, up=Length[lst], v}, (While[lo<=up, v=Floor[(lo+up)/2]; If[lst[[v]]-find==0, Return[v]]; If[lst[[v]]0&]]]+offset-1]]; z=1; (*contains exactly ONE myPrime in the interval*) Table[myPrime[[NestWhile[#1+1&, 1, !((nextMyPrime[n myPrime[[#1]], z+1]>n myPrime[[#1+1]]))&]]], {n, 2, 30}] CROSSREFS Cf. A195325, A207820, A210465, A210467. Sequence in context: A166545 A022347 A026907 * A304268 A214466 A302678 Adjacent sequences:  A210472 A210473 A210474 * A210476 A210477 A210478 KEYWORD nonn AUTHOR Vladimir Shevelev and Peter J. C. Moses, Jan 23 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 20:06 EST 2022. Contains 350410 sequences. (Running on oeis4.)