login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026907
Triangular array T read by rows (9-diamondization of Pascal's triangle). Step 1: t(n,k) = sum of 9 entries in diamond-shaped subarray of Pascal's triangle having vertices C(n,k), C(n+4,k+2), C(n+2,k), C(n+2,k+2). Step 2: T(n,k) = t(n,k) - t(0,0) + 1.
14
1, 13, 13, 28, 44, 28, 46, 90, 90, 46, 67, 154, 198, 154, 67, 91, 239, 370, 370, 239, 91, 118, 348, 627, 758, 627, 348, 118, 148, 484, 993, 1403, 1403, 993, 484, 148, 181, 650, 1495, 2414, 2824, 2414, 1495, 650, 181, 217, 849, 2163, 3927, 5256, 5256, 3927, 2163, 849, 217
OFFSET
0,2
LINKS
Indranil Ghosh, Rows 0..125, flattened
EXAMPLE
Triangle starts:
1;
13, 13;
28, 44, 28;
46, 90, 90, 46;
67, 154, 198, 154, 67;
91, 239, 370, 370, 239, 91;
...
MATHEMATICA
t[n_, k_]:=Binomial[n + 4, k + 2 ] + Binomial[n + 3, k + 1] + Binomial[n + 3, k + 2] + Binomial[n + 2, k] + Binomial[n + 2, k + 1] + Binomial[n + 2, k + 2] + Binomial[n + 1, k] + Binomial[n + 1, k + 1] + Binomial[n, k] ; T[n_, k_]:=t[n, k] - t[0, 0] + 1; Flatten[Table[T[n, k], {n, 0, 9}, {k, 0, n}]] (* Indranil Ghosh, Mar 13 2017 *)
PROG
(PARI) alias(C, binomial);
t(n, k) = C(n+4, k+2) + C(n+3, k+1) + C(n+3, k+2) + C(n+2, k) + C(n+2, k+1) + C(n+2, k+2) + C(n+1, k) + C(n+1, k+1) + C(n, k);
T(n, k) = t(n, k)-t(0, 0)+1;
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print());
\\ Michel Marcus, Mar 13 2017
CROSSREFS
Sequence in context: A003889 A166545 A022347 * A210475 A379220 A304268
KEYWORD
nonn,tabl
STATUS
approved