login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210110
Primes p such that 2p*(p+1) is the sum of 2 successive primes.
1
2, 3, 5, 7, 23, 29, 41, 59, 79, 89, 101, 131, 139, 151, 197, 229, 317, 337, 347, 389, 397, 421, 479, 631, 743, 761, 821, 829, 953, 977, 1033, 1193, 1279, 1451, 1697, 1747, 1787, 1789, 1879, 1997, 1999, 2017, 2099, 2213, 2237, 2347, 2411, 2477, 2579, 2621, 2663
OFFSET
1,1
LINKS
EXAMPLE
2 is in the sequence because 2*2*(2+1) = 5+7 = 12.
3 is in the sequence because 2*3*(3+1) = 11+13 = 24.
5 is in the sequence because 2*5*(5+1) = 29+31 = 60.
7 is in the sequence because 2*7*(7+1) = 53+59 = 112.
23 is in the sequence because 2*23*(23+1) = 547+557 = 1104.
MAPLE
a:= proc(n) option remember; local p, t;
p:= `if`(n=1, 1, a(n-1));
do p:= nextprime(p);
t:= p*(p+1);
if prevprime(t)+nextprime(t)=2*t then return p fi
od
end:
seq(a(n), n=1..60); # Alois P. Heinz, Mar 19 2012
MATHEMATICA
a[n_] := a[n] = Module[{p, t}, p = If[n==1, 1, a[n-1]]; While[True, p = NextPrime[p]; t = p(p+1); If[NextPrime[t, -1] + NextPrime[t]==2t, Return[p]]]];
Array[a, 60] (* Jean-François Alcover, Nov 20 2020, after Alois P. Heinz *)
CROSSREFS
Cf. A001043.
Sequence in context: A225659 A068690 A069556 * A235144 A235126 A309248
KEYWORD
nonn
AUTHOR
Gerasimov Sergey, Mar 17 2012
STATUS
approved