This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209883 Decimal expansion of constant C = maximum value that PrimePi(n)*log(n)/n reaches where PrimePi(n) is the number of primes less than or equal to n, A000720. 0
 1, 2, 5, 5, 0, 5, 8, 7, 1, 2, 9, 3, 2, 4, 7, 9, 7, 9, 6, 9, 6, 8, 7, 0, 7, 4, 7, 6, 1, 8, 1, 2, 4, 4, 6, 9, 1, 6, 8, 9, 2, 0, 2, 7, 5, 8, 0, 6, 2, 7, 4, 1, 7, 1, 5, 4, 1, 7, 7, 9, 1, 5, 1, 3, 8, 0, 8, 0, 2, 8, 4, 7, 0, 5, 0, 2, 4, 0, 2, 6, 7, 3, 6, 7, 3, 3, 2, 4, 8, 0, 5, 9, 7, 3, 4, 1, 7, 3, 6, 5, 8, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The prime number theorem states that PrimePi(n) ~ n/log(n). Consequently, the function PrimePi(n)*log(n)/n tends to 1 as n tends to infinity, however it has a maximum value of 1.2550587.... when n=113. In precise terms this constant is 30*log(113)/113 and it provides an upper bound for PrimePi(n), i.e. PrimePi(n) <= (30*log(113)/113)*n/log(n) for all n>1. REFERENCES Rosser, J. Barkley; Schoenfeld, Lowell Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 1962 64-94 LINKS Mathworld, Prime Counting Function. FORMULA C = 30*log(113)/113 = 1.255058712932479796968707476181244691689202758... EXAMPLE The maximum value for PrimePi(n)*log(n)/n occurs at n = 113. MATHEMATICA \$MaxPiecewiseCases=10000; sol=Maximize[{PrimePi[n]Log[n]/n, 1

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .