The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209881 G.f. satisfies: A(x) = 1 + x*[d/dx 1/(1 - x*A(x))]. 5
 1, 1, 4, 21, 136, 1030, 8856, 84861, 894928, 10291986, 128165720, 1718395602, 24686953968, 378444958060, 6167922926704, 106525443913245, 1943838547593888, 37375737467294362, 755393226726677976, 16011417246585359046, 355187993770520180400, 8230524179585799932820 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..300 FORMULA a(n) = n*A075834(n+1) for n>=1. [corrected by Vaclav Kotesovec, Aug 24 2017] Given g.f. A(x), the g.f. of A075834 = 1 + x/(1 - x*A(x)). Forms the logarithmic derivative of A075834. O.g.f. A(x) satisfies: [x^n] ( 1 + x/(1 - x*A(x)) )^(n+1) = (n+1)! for n>=0. O.g.f. A(x) satisfies: [x^n] exp( n * Integral A(x) dx ) * (n + 1 - A(x)) = 0 for n > 0. - Paul D. Hanna, Jun 04 2018 a(n) ~ exp(-1) * n^2 * n!. - Vaclav Kotesovec, Aug 24 2017 EXAMPLE G.f.: A(x) = 1 + x + 4*x^2 + 21*x^3 + 136*x^4 + 1030*x^5 + 8856*x^6 +... The g.f. of A075834, G(x) = 1/(1 - x*A(x)), begins: G(x) = 1 + x + 2*x^2 + 7*x^3 + 34*x^4 + 206*x^5 + 1476*x^6 +... The logarithm of the g.f. of A075834 begins: log(G(x)) = x + x^2/2 + 4*x^3/3 + 21*x^4/4 + 136*x^5/5 + 1030*x^6/6 +... PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*deriv(1/(1-x*A+x*O(x^n)))); polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A075834. Sequence in context: A001909 A205077 A292928 * A052852 A288869 A288268 Adjacent sequences:  A209878 A209879 A209880 * A209882 A209883 A209884 KEYWORD nonn AUTHOR Paul D. Hanna, Mar 14 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 21:04 EDT 2021. Contains 347608 sequences. (Running on oeis4.)