login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Half the number of (n+1) X 2 0..3 arrays with every 2 X 2 subblock having exactly one duplicate clockwise edge difference.
1

%I #8 Jul 12 2018 15:31:43

%S 64,576,5074,44948,397734,3520628,31161462,275819644,2441352670,

%T 21609092620,191268034094,1692966274828,14984912401894,

%U 132635602320228,1173994381706142,10391348815984084,91976700981777710,814111206705377460

%N Half the number of (n+1) X 2 0..3 arrays with every 2 X 2 subblock having exactly one duplicate clockwise edge difference.

%C Column 1 of A209787.

%H R. H. Hardin, <a href="/A209780/b209780.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 7*a(n-1) + 22*a(n-2) - 39*a(n-3) - 95*a(n-4) + 30*a(n-6).

%F Empirical g.f.: 2*x*(32 + 64*x - 183*x^2 - 373*x^3 + 7*x^4 + 120*x^5) / (1 - 7*x - 22*x^2 + 39*x^3 + 95*x^4 - 30*x^6). - _Colin Barker_, Jul 12 2018

%e Some solutions for n=4:

%e ..0..2....2..0....3..3....1..2....1..1....1..1....1..2....3..1....1..0....0..0

%e ..0..1....2..2....0..3....0..2....3..2....2..1....0..2....3..3....0..0....1..0

%e ..0..0....1..1....0..0....2..2....1..1....2..3....0..0....1..1....0..3....2..0

%e ..2..2....0..1....3..3....0..0....1..0....1..3....0..1....3..1....2..1....2..1

%e ..1..2....1..1....3..1....2..2....0..0....1..1....0..1....1..1....0..1....1..1

%Y Cf. A209787.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 13 2012