login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209780
Half the number of (n+1) X 2 0..3 arrays with every 2 X 2 subblock having exactly one duplicate clockwise edge difference.
1
64, 576, 5074, 44948, 397734, 3520628, 31161462, 275819644, 2441352670, 21609092620, 191268034094, 1692966274828, 14984912401894, 132635602320228, 1173994381706142, 10391348815984084, 91976700981777710, 814111206705377460
OFFSET
1,1
COMMENTS
Column 1 of A209787.
LINKS
FORMULA
Empirical: a(n) = 7*a(n-1) + 22*a(n-2) - 39*a(n-3) - 95*a(n-4) + 30*a(n-6).
Empirical g.f.: 2*x*(32 + 64*x - 183*x^2 - 373*x^3 + 7*x^4 + 120*x^5) / (1 - 7*x - 22*x^2 + 39*x^3 + 95*x^4 - 30*x^6). - Colin Barker, Jul 12 2018
EXAMPLE
Some solutions for n=4:
..0..2....2..0....3..3....1..2....1..1....1..1....1..2....3..1....1..0....0..0
..0..1....2..2....0..3....0..2....3..2....2..1....0..2....3..3....0..0....1..0
..0..0....1..1....0..0....2..2....1..1....2..3....0..0....1..1....0..3....2..0
..2..2....0..1....3..3....0..0....1..0....1..3....0..1....3..1....2..1....2..1
..1..2....1..1....3..1....2..2....0..0....1..1....0..1....1..1....0..1....1..1
CROSSREFS
Cf. A209787.
Sequence in context: A265636 A209787 A247841 * A330831 A177757 A301796
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 13 2012
STATUS
approved