login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209244
Decimal expansion of a constant arising in slices, slabs, and sections of the unit hypercube.
1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 8, 2, 0, 1, 3, 4, 8, 3, 0, 6, 6, 7, 7, 0, 9, 9, 4, 6, 1, 4, 5, 7, 1, 3, 3, 1, 2, 2, 5, 3, 5, 0, 2, 1, 7, 5, 0, 0, 8, 3, 1, 4, 2, 3, 2, 6, 4, 1, 4, 2, 9, 5, 7, 5, 3, 9, 4, 5, 2, 8, 8, 2, 4, 0, 0, 8, 7, 4, 7, 4, 6, 5, 8, 8, 2, 0, 3, 5, 7, 7, 2, 9, 2, 4, 9, 1, 5, 2, 7, 1, 8, 1, 9, 3, 1, 7, 7, 8, 6, 1, 3, 8, 8, 7, 1, 9, 5, 9, 1, 1, 5, 1, 8
OFFSET
0,13
COMMENTS
Marichal, p. 6, gives a surprising formula: Integral_{0..oo} sinc(x) Product_{p prime, 3 <= p <= 29} sinc(x/p) dx = (Pi/2) * (1 - (54084649^9) / (181440 * (3234846615^8))) = (0.49999999999908993...)*Pi.
Rational, and thus (eventually) periodic; period 2^4 * 3^10 * 7^8 * 11^7 * 13^7 * 17^7 * 19^7 * 23^7 * 29^7. - Charles R Greathouse IV, Jan 14 2013
LINKS
D. Borwein, J. M. Borwein, and B. A. Mares Jr., Multi-variable sinc integrals and volumes of polyhedra, Ramanujan J. 6 (2002), no. 2, 189-208.
D. Borwein and J. M. Borwein, Some remarkable properties of sinc and related integrals, Ramanujan J. 5 (2001), no. 1, 73-89.
Jean-Luc Marichal and Michael J. Mossinghoff, Slices, slabs, and sections of the unit hypercube, arXiv:math/0607715 [math.MG], 2006-2008.
Jean-Luc Marichal and Michael J. Mossinghoff, Slices, slabs, and sections of the unit hypercube, Online Journal of Analytic Combinatorics, Issue 3 (2008), #1.
FORMULA
Equals 54084649^9 / (181440 * 3234846615^8).
EXAMPLE
1.82013483... * 10^(-12).
MATHEMATICA
Join[Table[0, {11}], RealDigits[54084649^9/(181440*3234846615^8), 10, 120][[1]]] (* Harvey P. Dale, May 24 2013 *)
CROSSREFS
Sequence in context: A284865 A221758 A322699 * A300220 A338851 A021850
KEYWORD
nonn,easy,cons
AUTHOR
Jonathan Vos Post, Jan 13 2013
STATUS
approved