login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209167
Triangle of coefficients of polynomials v(n,x) jointly generated with A209166; see the Formula section.
3
1, 2, 2, 3, 5, 3, 5, 12, 12, 5, 8, 25, 35, 25, 8, 13, 50, 89, 89, 50, 13, 21, 96, 207, 263, 207, 96, 21, 34, 180, 455, 698, 698, 455, 180, 34, 55, 331, 959, 1719, 2073, 1719, 959, 331, 55, 89, 600, 1959, 4011, 5643, 5643, 4011, 1959, 600, 89, 144, 1075
OFFSET
1,2
COMMENTS
Row n begins and ends with F(n+1), where F=A000045 (Fibonacci numbers).
Alternating row sums: 1,0,1,0,1,0,1,0,1,0,1,0,1,0,...
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
3....1
6....4....1
12...14...7....1
24...40...28...8...1
MATHEMATICA
First three polynomials v(n, x): 1, 3 + x, 6 + 4x + x^2.
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209166 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209167 *)
CROSSREFS
Sequence in context: A317043 A317697 A132403 * A299995 A113167 A036014
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 08 2012
STATUS
approved