Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Mar 13 2017 04:25:03
%S 1,1,1,1,2,1,1,2,3,2,1,3,5,7,3,1,3,7,16,17,5,1,4,11,33,59,51,9,1,4,15,
%T 58,159,253,155,18,1,5,19,95,351,874,1111,508,35,1,5,25,144,683,2354,
%U 4935,5067,1683,73,1,6,31,209,1207,5404,16307,28816,23483,5709,151,1,6,37,290
%N T(n,k) is the number of n-bead necklaces labeled with numbers -k..k not allowing reversal, with sum zero and first differences in -k..k.
%C Table starts
%C ..1...1....1.....1......1......1.......1.......1.......1........1........1
%C ..1...2....2.....3......3......4.......4.......5.......5........6........6
%C ..1...3....5.....7.....11.....15......19......25......31.......37.......45
%C ..2...7...16....33.....58.....95.....144.....209.....290......391......512
%C ..3..17...59...159....351....683....1207....1989....3099.....4623.....6647
%C ..5..51..253...874...2354...5404...11010...20553...35781....58971....92851
%C ..9.155.1111..4935..16307..44209..104001..219929..428031...779487..1344353
%C .18.508.5067.28816.116183.371893.1008880.2416967.5255962.10577092.19976373
%H R. H. Hardin, <a href="/A208993/b208993.txt">Table of n, a(n) for n = 1..203</a>
%F Empirical for row n:
%F n=2: a(k) = a(k-1) + a(k-2) - a(k-3).
%F n=3: a(k) = 2*a(k-1) - a(k-2) + a(k-3) - 2*a(k-4) + a(k-5).
%F n=4: a(k) = 3*a(k-1) - 2*a(k-2) - 2*a(k-3) + 3*a(k-4) - a(k-5).
%F n=5: a(k) = 2*a(k-1) + a(k-2) - 4*a(k-3) + a(k-4) + 3*a(k-5) - 3*a(k-6) - a(k-7) + 4*a(k-8) - a(k-9) - 2*a(k-10) + a(k-11).
%e Some solutions for n=6, k=6:
%e .-3...-4...-5...-5...-6...-5...-4...-2...-4...-5...-4...-4...-3...-6...-5...-5
%e ..0...-3...-4...-3...-1....1....2...-2...-2....1...-1....1....3....0...-1....1
%e ..0....3....1....3....2....5....5....1....3....1....4....3....0....4....0...-2
%e .-1....5....5....2....3....2...-1....2....2....1....0....4....0....2....5....0
%e ..1....1....4....2....3...-4....0...-2...-1....2....2...-1...-2....2....2....6
%e ..3...-2...-1....1...-1....1...-2....3....2....0...-1...-3....2...-2...-1....0
%Y Row 2 is A004526(n+2).
%K nonn,tabl
%O 1,5
%A _R. H. Hardin_, Mar 04 2012