login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208993
T(n,k) is the number of n-bead necklaces labeled with numbers -k..k not allowing reversal, with sum zero and first differences in -k..k.
14
1, 1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 3, 5, 7, 3, 1, 3, 7, 16, 17, 5, 1, 4, 11, 33, 59, 51, 9, 1, 4, 15, 58, 159, 253, 155, 18, 1, 5, 19, 95, 351, 874, 1111, 508, 35, 1, 5, 25, 144, 683, 2354, 4935, 5067, 1683, 73, 1, 6, 31, 209, 1207, 5404, 16307, 28816, 23483, 5709, 151, 1, 6, 37, 290
OFFSET
1,5
COMMENTS
Table starts
..1...1....1.....1......1......1.......1.......1.......1........1........1
..1...2....2.....3......3......4.......4.......5.......5........6........6
..1...3....5.....7.....11.....15......19......25......31.......37.......45
..2...7...16....33.....58.....95.....144.....209.....290......391......512
..3..17...59...159....351....683....1207....1989....3099.....4623.....6647
..5..51..253...874...2354...5404...11010...20553...35781....58971....92851
..9.155.1111..4935..16307..44209..104001..219929..428031...779487..1344353
.18.508.5067.28816.116183.371893.1008880.2416967.5255962.10577092.19976373
LINKS
FORMULA
Empirical for row n:
n=2: a(k) = a(k-1) + a(k-2) - a(k-3).
n=3: a(k) = 2*a(k-1) - a(k-2) + a(k-3) - 2*a(k-4) + a(k-5).
n=4: a(k) = 3*a(k-1) - 2*a(k-2) - 2*a(k-3) + 3*a(k-4) - a(k-5).
n=5: a(k) = 2*a(k-1) + a(k-2) - 4*a(k-3) + a(k-4) + 3*a(k-5) - 3*a(k-6) - a(k-7) + 4*a(k-8) - a(k-9) - 2*a(k-10) + a(k-11).
EXAMPLE
Some solutions for n=6, k=6:
.-3...-4...-5...-5...-6...-5...-4...-2...-4...-5...-4...-4...-3...-6...-5...-5
..0...-3...-4...-3...-1....1....2...-2...-2....1...-1....1....3....0...-1....1
..0....3....1....3....2....5....5....1....3....1....4....3....0....4....0...-2
.-1....5....5....2....3....2...-1....2....2....1....0....4....0....2....5....0
..1....1....4....2....3...-4....0...-2...-1....2....2...-1...-2....2....2....6
..3...-2...-1....1...-1....1...-2....3....2....0...-1...-3....2...-2...-1....0
CROSSREFS
Row 2 is A004526(n+2).
Sequence in context: A030496 A005794 A280860 * A328029 A201384 A238348
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 04 2012
STATUS
approved