login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208947
Number of 5-bead necklaces labeled with numbers -n..n not allowing reversal, with sum zero with no three beads in a row equal.
1
8, 68, 274, 766, 1722, 3376, 6004, 9928, 15514, 23178, 33378, 46624, 63464, 84496, 110366, 141766, 179426, 224132, 276712, 338040, 409034, 490662, 583934, 689912, 809696, 944436, 1095330, 1263622, 1450594, 1657584, 1885972, 2137184, 2412690
OFFSET
1,1
COMMENTS
Row 5 of A208945.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-6) - 2*a(n-7) + 3*a(n-8) - 3*a(n-9) + a(n-10).
Empirical g.f.: 2*x*(4 + 22*x + 47*x^2 + 66*x^3 + 63*x^4 + 48*x^5 + 21*x^6 + 6*x^7 - x^8) / ((1 - x)^5*(1 + x)*(1 + x^2)*(1 + x + x^2)). - Colin Barker, Jul 07 2018
EXAMPLE
Some solutions for n=5:
-5 -3 -4 -4 -5 -5 -5 -5 -3 -4 -5 -5 -4 -5 -2 -4
0 2 2 2 -5 4 5 -5 1 -2 4 3 1 -3 4 0
5 -2 3 -2 3 -2 -1 3 -2 2 2 3 3 2 -1 5
-2 4 2 5 5 2 -4 2 5 5 1 0 -2 1 0 1
2 -1 -3 -1 2 1 5 5 -1 -1 -2 -1 2 5 -1 -2
CROSSREFS
Cf. A208945.
Sequence in context: A250258 A192091 A050841 * A296670 A263477 A249390
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 03 2012
STATUS
approved