|
|
A208945
|
|
T(n,k) = number of n-bead necklaces labeled with numbers -k..k not allowing reversal, with sum zero with no three beads in a row equal.
|
|
13
|
|
|
1, 1, 2, 1, 3, 2, 1, 4, 6, 5, 1, 5, 12, 22, 8, 1, 6, 20, 57, 68, 20, 1, 7, 30, 122, 274, 264, 38, 1, 8, 42, 223, 766, 1464, 988, 88, 1, 9, 56, 366, 1722, 5238, 7974, 3954, 196, 1, 10, 72, 563, 3376, 14430, 37044, 45050, 15980, 464, 1, 11, 90, 820, 6004, 33468, 125322, 270832
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Table starts
..1....1.....1......1.......1.......1........1........1........1.........1
..2....3.....4......5.......6.......7........8........9.......10........11
..2....6....12.....20......30......42.......56.......72.......90.......110
..5...22....57....122.....223.....366......563......820.....1143......1544
..8...68...274....766....1722....3376.....6004.....9928....15514.....23178
.20..264..1464...5238...14430...33468....68722...128844...225126....371858
.38..988..7974..37044..125322..344456...817362..1738516..3397474...6205668
.88.3954.45050.270832.1123612.3656654.10024344.24184890.52854218.106749960
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..182
|
|
EXAMPLE
|
Some solutions for n=5, k=5:
.-2...-5...-4...-3...-4...-4...-5...-5...-4...-3...-3...-5...-5...-5...-5...-4
..1....4...-1....1...-3...-2....4....3....0....3...-1....3....4....0...-5....2
..0...-1...-3...-1....1....4....3....4....3....1....1...-1....0....3....5....3
..2....4....5....2....2....3....0...-3....0....0....4....5....2...-2....3...-3
.-1...-2....3....1....4...-1...-2....1....1...-1...-1...-2...-1....4....2....2
|
|
CROSSREFS
|
Row 3 is A002378.
Sequence in context: A136451 A066121 A039911 * A209073 A332077 A220901
Adjacent sequences: A208942 A208943 A208944 * A208946 A208947 A208948
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
R. H. Hardin, Mar 03 2012
|
|
STATUS
|
approved
|
|
|
|