login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208850
Expansion of phi(q^2) / phi(-q) in powers of q where phi() is a Ramanujan theta function.
7
1, 2, 6, 12, 22, 40, 68, 112, 182, 286, 440, 668, 996, 1464, 2128, 3056, 4342, 6116, 8538, 11820, 16248, 22176, 30068, 40528, 54308, 72378, 95976, 126648, 166352, 217560, 283344, 367552, 474998, 611624, 784812, 1003712, 1279562, 1626216, 2060708, 2603856
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^4)^5 / (eta(q)^2 * eta(q^2) * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ 2, 3, 2, -2, 2, 3, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 8^(-1/2) * g(t) where q = exp(2 Pi i t) and g() is g.f. for A208589.
G.f.: (Sum_k x^(2 * k^2)) / (Sum_k (-1)^k * x^k^2).
a(n) ~ exp(sqrt(n)*Pi)/(8*n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
EXAMPLE
1 + 2*q + 6*q^2 + 12*q^3 + 22*q^4 + 40*q^5 + 68*q^6 + 112*q^7 + 182*q^8 + ...
MATHEMATICA
nmax=60; CoefficientList[Series[Product[(1-x^(4*k))^5 / ((1-x^k)^2 * (1-x^(2*k)) * (1-x^(8*k))^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 13 2015 *)
a[n_] := SeriesCoefficient[EllipticTheta[3, 0, q^2]/EllipticTheta[3, 0, -q], {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Nov 27 2017 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^5 / (eta(x + A)^2 * eta(x^2 + A) * eta(x^8 + A)^2), n))}
CROSSREFS
Cf. A208589.
Sequence in context: A182977 A116658 A210065 * A131520 A086953 A101953
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 02 2012
STATUS
approved