Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jan 24 2020 03:28:20
%S 1,0,3,0,1,8,0,1,4,22,0,1,4,16,60,0,1,4,18,56,164,0,1,4,20,68,188,448,
%T 0,1,4,22,80,248,608,1224,0,1,4,24,92,312,864,1920,3344,0,1,4,26,104,
%U 380,1152,2928,5952,9136,0,1,4,28,116,452,1472,4128,9696,18192
%N Triangle of coefficients of polynomials v(n,x) jointly generated with A208757; see the Formula section.
%C For a discussion and guide to related arrays, see A208510.
%C As triangle T(n,k) with 0 <= k <= n, it is (0, 1/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, -1/3, -2/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 02 2012
%F u(n,x) = u(n-1,x) + 2x*v(n-1,x),
%F v(n,x) = x*u(n-1,x) + 2x*v(n-1,x),
%F where u(1,x)=1, v(1,x)=1.
%F As triangle T(n,k), 0 <= k <= n: g.f.: (1-x-y*x)/(1-(1+2*y)*x -2*y(y-1)*x^2). - _Philippe Deléham_, Mar 02 2012
%F As triangle T(n,k), 0 <= k <= n: T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) + 2*T(n-2,k-2) with T(0,0) = 1, T(1,0) = 0, T(1,1) = 3 and T(n,k) = 0 if k < 0 or if k > n. - _Philippe Deléham_, Mar 02 2012
%e First five rows:
%e 1;
%e 0, 3;
%e 0, 1, 8;
%e 0, 1, 4, 22;
%e 0, 1, 4, 16, 60;
%e First five polynomials v(n,x):
%e 1
%e 3x
%e x + 8x^2
%e x + 4x^2 + 22x^3
%e x + 4x^2 + 16x^3 + 60^x4
%t u[1, x_] := 1; v[1, x_] := 1; z = 16;
%t u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
%t v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x];
%t Table[Expand[u[n, x]], {n, 1, z/2}]
%t Table[Expand[v[n, x]], {n, 1, z/2}]
%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t TableForm[cu]
%t Flatten[%] (* A208757 *)
%t Table[Expand[v[n, x]], {n, 1, z}]
%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t TableForm[cv]
%t Flatten[%] (* A208758 *)
%Y Cf. A208757, A208510.
%K nonn,tabl
%O 1,3
%A _Clark Kimberling_, Mar 02 2012