login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208153
Convolution triangle based on A006053.
1
1, 1, 1, 3, 2, 1, 4, 7, 3, 1, 9, 14, 12, 4, 1, 14, 35, 31, 18, 5, 1, 28, 70, 87, 56, 25, 6, 1, 47, 154, 207, 175, 90, 33, 7, 1, 89, 306, 504, 476, 310, 134, 42, 8, 1, 155, 633, 1137, 1274, 941, 504, 189, 52, 9, 1
OFFSET
0,4
COMMENTS
Riordan array (1/(1-x-2*x^2+x^3), x/(1-x-2*x^2+x^3).
Subtriangle of triangle given by (0, 1, 2, -5/2, 1/10, 2/5, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Diagonal sums are A125691(n).
Row sums are A001654(n+1).
Mirror image of triangle in A188107.
LINKS
Indranil Ghosh, Rows 1..100, flattened
FORMULA
T(n,k) = T(n-1,k-1) + T(n-1,k) + 2*T(n-2,k) - T(n-3,k).
G.f.: 1/(1-x-2*x^2+x^3-y*x).
Sum_{k, k>=0} T(n-2*k,k) = A001045(n+1).
Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n*A008346(n), A006053(n+2), A001654(n+1) for x = -1, 0, 1 respectively.
EXAMPLE
Triangle begins :
1
1, 1
3, 2, 1
4, 7, 3, 1
9, 14, 12, 4, 1
14, 35, 31, 18, 5, 1
Triangle (0, 1 ,2, -5/2, 1/10, 2/5, 0, 0,...) DELTA (1, 0, 0, 0,...) begins :
1
0, 1
0, 1, 1
0, 3, 2, 1
0, 4, 7, 3, 1
0, 9, 14, 12, 4, 1
0, 14, 35, 31, 18, 5, 1
MATHEMATICA
nmax=9; Flatten[CoefficientList[Series[CoefficientList[Series[1/(1 - x - 2*x^2 + x^3 - y*x), {x, 0, nmax}], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 10 2017 *)
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Feb 24 2012
STATUS
approved