login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n X 4 0..1 arrays avoiding 0 0 0 and 1 1 1 horizontally and 0 0 1 and 0 1 1 vertically.
1

%I #8 Jun 27 2018 06:15:47

%S 10,100,240,576,1008,1764,2688,4096,5760,8100,10800,14400,18480,23716,

%T 29568,36864,44928,54756,65520,78400,92400,108900,126720,147456,

%U 169728,195364,222768,254016,287280,324900,364800,409600,456960,509796,565488

%N Number of n X 4 0..1 arrays avoiding 0 0 0 and 1 1 1 horizontally and 0 0 1 and 0 1 1 vertically.

%C Column 4 of A208069.

%H R. H. Hardin, <a href="/A208065/b208065.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>9.

%F Conjectures from _Colin Barker_, Jun 27 2018: (Start)

%F G.f.: 2*x*(5 + 40*x + 10*x^2 - 22*x^3 - 12*x^4 - 12*x^5 + 10*x^6 + 10*x^7 - 5*x^8) / ((1 - x)^5*(1 + x)^3).

%F a(n) = n^2*(n + 8)^2/4 for n>1 and even.

%F a(n) = (n - 1)*(n + 1)*(n + 7)*(n + 9)/4 for n>1 and odd.

%F (End)

%e Some solutions for n=4:

%e ..0..1..1..0....1..1..0..1....0..1..0..0....0..0..1..0....1..1..0..1

%e ..1..1..0..1....0..0..1..0....0..0..1..0....1..1..0..0....1..1..0..1

%e ..0..1..0..0....0..1..0..1....0..1..0..0....0..0..1..0....1..1..0..1

%e ..1..0..0..1....0..0..1..0....0..0..1..0....1..1..0..0....1..0..0..1

%Y Cf. A208069.

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 23 2012